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ABSTRACT

This contribution describes a fast frequency domain ap-
proach for blind channel identification which does not rely
on the statistic of the symbols. The proposed approach is
based on the so–called “intraspectral relations” of DFT’s
of PAM fractionally sampled signals. The use of DFT’s
is allowed under certain conditions commonly encountered
in data communication systems. The intraspectral rela-
tions are equivalent to analogous relations introduced in the
time domain in [1, 2, 3]. From the intraspectral relations,
asymptotically efficient solutions are derived which turn
out to be either more accurate or less expensive in term of
complexity w.r.t. the time domain counterparts. Simulation
results are provided to assess the validity of the proposed
approach in comparison with the Rao Cramer bound and
with other approaches from the literature.

1. INTRODUCTION
Blind identification and equalization of data communica-
tion channels are interesting as they do not require training
sequences thus saving channel bandwidth. Older methods
were based on statistical assumptions about the transmitted
symbol sequence. In recent years new methods based on
spectral redundancy have been investigated. In these meth-
ods channel estimation was connected to the multichannel
nature of the oversampled received sequence. In those re-
lated algorithms, the unknown channel response is the so-
lution of a Least Square system obtained by imposing the
“Cross Relations” among the different temporal subchan-
nels [1] (CR method). These relations assure, under some
conditions,an exact estimation of the channel for infinite
symbol sequences and/or for no additive noise conditions.
More robust estimates can be achieved by the subspace (SS)
blind identification introduced in [2] which is derived from
MUSIC -like approaches. In this method, the observed data
space is decomposed in the channel and noise subspaces.
The solution is represented by the orthogonal vectors to the
noise subspace.

A widely known property of linear systems is that if
the noise affects only the vector of known terms and if the
perturbation is white Gaussian then the Least Square esti-
mation is equivalent to the Maximum likelihood estimation.
This condition is achieved by weighing the linear system
with a proper matrix. The Two Steps Maximum Likelihood

method (TSML) [3] is based on these concepts. The algo-
rithm consists of computing a first channel estimate thor-
ough CR or SS methods using it to weight a new CR sys-
tem. Another class of methods invoke the cyclostationarity
of the fractionally sampled signals. The so called ”cyclic
spectra” are estimated in order to extract phase channel
information. In [4, 5], blind channel identification meth-
ods based on cyclic spectra are proposed. In [6], adaptive
and optimal solution are further presented. In this contri-
bution, we present a deterministic method based on signal
representation in the discrete time Fourier domain. The CR
relations are converted into ”intra spectral” DFT relations
valid for data burst spaced by time guards. This condi-
tion is often satisfied especially in mobile communication.
We show that these ”intra-spectral relations” project data
on the eigenspace of the Fourier basis and we introduce
consistent and two steps asymptotically efficient solutions.
Among the benefits, this eigendecomposition allows for a
considerable reduction of the computational complexity of
the method with respect to the time domain solutions.

2. THE SPECTRAL REDUNDANCY

The proposed method relies on the spectral properties of
the Pulse Amplitude Modulated (PAM) signals. A typical
PAM signal is defined as:
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whereDQ is a complex sequence of symbols,p�W� is the
Dirac distribution and7 is the symbol period. The Con-
tinuous Time Fourier Transform (CTFT)$�I�  ) ID�W�J
is characterised by a� 7 periodicity. In fact we have
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The spectral redundancy can be used to derive “intraspec-
tral relations” among the received signal\�W� and the chan-
nel responseK�W� regardless the actual symbol sequenceDQ
. Considering the (noiseless) received signal directly in the



frequency domain we have:
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where;�I� and +�I� are the CTFT of[�W� and K�W�,
respectively, and all shaping filters have been included in
the channelK�W�.

Eliminating $�I�, we obtain the following homoge-
neous equations:
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This equality turns out to be the CR condition for the case
of signal pair extracted from PAM signal. Its discrete time
version has been also outlined in [5]

3. CHANNEL IDENTIFIABILITY
The relation (5) enlightens a simple general condition for
channel identifiability. Constant complex factors multipling
+�I� are not identifiable since they can be dropped out in
(5). More generally, if+�I� can be expressed as+�I�  
+�I� c+��I� where+��I� shows a� 7 periodicity, i.e.
+��I�  +��I � � 7 �, then+��I� can be dropped out
from (5) and it cannot be identified by the intraspectral rela-
tions. Those periodical frequency responses do correspond
to time responses of the kindK��W�  

3
mNp�W b N7 �.

Therefore our identifiability condition for PAM signals is
the following: Channel factors originating from echoes at
integer multiples of the symbol period7 are not identi-
fiable. This condition generalizes the identifiability con-
ditions previously reported in literature for channels rep-
resented by polynomial models (see [7]). In fact, if we
assume a FIR model for the channel, the previous identifi-
ability condition are equivalent to the well-known condition
on the system function of the channel which must not have
zeroes uniformly spaced on a circle or equivalently com-
mon zeroes between subchannels [7].

4. A NEW BLIND INDENTIFICATION METHOD
Let us consider the fractionally sampling of the received
signal \�Q�  \�Q7 ��. In this case,\�Q� still embodies
the spectral redundancy provided that the roll-off of the
shaping filters is greater then zero. In fact the fractionally
sampling periodizes the spectrum at distances� 7 thus
preserving the band in which redundancy is present. We
then introduce the Discrete Fourier Transforms (DFT) of
the fractionally sampled sequences when1 data samples
are considered:
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The periodicity of the spectrum$�I� (2) still holds even
for its DFT counterpart$�N�. In fact it is easily shown

that
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On the contrary, the CTFT products in (3) and (4) are
equivalent to DFT products only if we can embed the un-
derlying linear convolution into a properly defined circular
convolution. This occurs when an/ order FIR filterK�Q�
is considered andDQ is suitably zero–padded from1b/b�
and1b�. In this case, the intraspectral relations (5) holds
also for DFT’s:
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These conditions are not rarely satisfied in digital data
communication. For example, in mobile communication,
TDMA systems require time guards between subsequent
data bursts in order to guarantee transmission into the proper
time slot bounds. These time guards must be long at least
the time required by the signal to be transmitted to the
maximum intra–cell distance which can be approximately
considered as the maximum time extension of the channel.
Moreover, other zeroed symbols are generally appended on
the head and the tail of a burst of data for synchronization
purposes.

Let us proceed with the identification algorithm and let
us collect the coefficients of the channel impulse response
in the/-vectorK  >K��� c c cK�/b ��@7. Now, the useful
equations of (5) are obtained considering frequency binsN
which correspond to non vanishing spectra. Taking into
account the selectivity of the shaping filters and denoting
by | their roll–off parameter, we can collect all the use-
ful equations in (5) by introducing the matrices< and H<
whose elements are given by:
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wherepST  � with S  T and � otherwise. Now, (5) is
rewritten in following compact form:r
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where the matrices: andI: are (partial) DFT matrices
defined as
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Noted that in (10), the received data< �N� are present in
the form of diagonal matrix. This will reduce the compu-
tational load of the weighed solutions required in presence
of noise.



Least Square solutions may be employed in order to
solve (10) in presence of noise. We introduce the DFT of
the noise corrupted received signal=�N�  < �N� � 9 �N�
where9 �N�is the DFT of a Gaussian zero mean i.i.d. noise
Y�Q� with variance}�Y. Defining the diagonal matrices=
and9, corresponding to=�N� and 9 �N� as in (9), the
intra-spectral relations are modified as follows:r
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A simple solution of (11) can be obtained by a constrained
ordinary least square solution:
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with the constraintMKN �. This solution which will re-
ferred to as ”FCR” is easily proved to be statistically un-
biased and consistent.

The Minimum Variance Unbiased (MVU) solution makes
explictely use of the (square root of the) covariance matrix
of the residueU, say5U  33+. The covariance matrix
5U is a diagonal matrix having nonzero entries

�5U�NN  }�U �N�  }�Y c
r
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s
and each equation in (11) is optimally weighed by}U�N�.
Unfortunately, the covariance5U depends on the actual
(unknown) channel response. Then, a two steps solution
can be employed whereas the first steps must obtain a con-
sistent estimation of the channelK using (11) and an es-
timation of the optimal weights}U is accomplished using
(4). In the second steps an optimally weighed version of
(11) is solved forK.

The Frequency domain Two Steps (FTS) solution is an
asymptotically MVU solution provided that unbiasedness
and consistency are guarantied for the solution obtained in
the first step. Moreover, if the residueU is Gaussian, as in
this case, the two steps solution is also an asymptotically
Maximum Likelihood solution. A FTS solution is sensible
to a poor initial estimation of}�U �N� achieved in the first
step. Assuming i.i.d. with variance}�D, another estimation
of the optimal weigths can be obtained using directly the
observations=�N�:
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This first step solution obtained through the weighting (13)
has been revelead to be more robust then the simple LS
solution (12) with respect to channel conditions. For this
reason the solution with estimated weigths in the frequency
domain (EWF) has been used as the first step of FTS.

The eigendecomposition of the data on the Fourier ba-
sis allows for a considerable reduction of the computational
cost. In essence, similar performances are achieved by FTS
w.r.t. TSML at lower complexity. In addition, the FTS
achieves better performances w.r.t. SS and CR methods at
a comparable computational cost. In particular, the num-
ber of multiplications required by the TSML are2�1���
��: b/�2�/���/1 where: is the window length (see
[2]), 1 is the number of observations,/ is the channel or-
der. FTS requires only�3��1 � ORJ

�
1�� �13 . Then

the requirement of2�1�� multiplications of TSML is re-
duced to1 � ORJ

�
�1� for the proposed method while ob-

taining similar results (see next section). SS and CR require
/��/1 , �:b/�2�/���/1 multiplications respectively
[8]. If we consider short length of data so thatORJ�1� �
is comparable to/, the proposed FTS requires a similar
or smaller number of multiplications while outperforming
the CR and SS time domain methods. In order to improve
accuracy, the ( known ) shaping filter must be separately
accounted for in either the time and the proposed frequency
method. In the time domain methods, this is obtained by a
subchannel convolution between the shaping function and
the observations [9]. If the length of the (truncated FIR)
shaping filter is/J, then an extra cost of2�1/J� must be
considered for the time domain methods while frequency
domain methods only require an2�1� extra cost. The
lower computational complexity for the FTS method with
respect to TSML is due to the weighing operation that for
FTS is fast. In fact, for each equation it consists only
in dividing the two factors=�N� and=�N �1 �� for the
standard deviation of the residue}U�N� whereas in the time
domain must be performed a full matrix matrix product af-
ter a pseudoinversion!

5. SIMULATION RESULTS
Tthe statistical performance of the three proposed frequency
domain solutions (FCR, EWF, FTS) are reported. Then,
performance of the FTS method are compared to time do-
main counterparts [1, 2, 3]. Comparison a +re performed
vs. SNR, andvs. a channel parameterp related to its identi-
fiability (lack of disparity). Performance are also compared
to the Cramer Rao bound (CRB) drawn from [3]. The chan-
nel impulse response isK >����b� FRV t�b� FRV�t�p�����@7

wheret is set to{ ��. p takes care of the lack of disparity.
In fact, for p � channel is not identifiable whilep { is
the best identifiability condition. SNR is computed accord-

ing to 615G%  �� ORJ��
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u
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i.i.d. (+1,-1). Performance are drawn from1U ��� Mon-
tecarlo runs. The mean square error of the channel parame-
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Figure 1: SNR = 45 dB,t  { ��, 1  ��

In the first figure the performances of the three frequency
domain solutions are reported (FCR, EWF, FTS). Experi-
mental conditions are the same of [3]. In particular SNR
= 45 dB,1  �� symbols.

In the second figure the FTS method is compared to
the time domain methods (CR, SS, TSML ) in the same
conditions of fig.1. For the SS method a window of W=6
is employed, and SS is used as the first steps of TSML
method [3] ). In the figure 3 the same test is reported for
p  { �� and the SNR parameter is variable. A linear
dependency of the SNR parameter in the logarithmic scale
can be assumed. This is confirmed by either the CRB either
the theoretical performances of the methods. In fig.4 the
performances of the methods FTS and TSML are reported
when a raised cosine shaping function is employed.
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