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ABSTRACT 3’y denote the covariance matrices®0fandY’. Mokkadem gener-

. _— . . alizes this definition for two independentidom processesX; }
In this contribution we generalize the test of sphericity as a test of (det(sx 27V

N
stationarity for time-series. The sphericity statistics is in our case aand{Y: } by definings = NI whereX x andZy
measure of distance between the empirical correlations calculatedienote the Toeplitz matrices of the correlations of the two pro-
on two contiguous segments of the same process. We prove thatesses up to a fixed lag (N-1). One can demonstrate that when the
under the hypothesis of stationarity the logarithm of the sphericity truncation order N tends to infinity then the sphericity tends to the
converges in distribution to a quadratic form in a multidimensional ratio ofexp( [, log ¢ x (w)¢y' (w)dw) and of [, ¢ x (w)py ' (w)dw
gaussian random variable with a convergence rate that is equal tqA =] — =, +=]). This quantity is always inferior or equal to one
the length of the observation window. We then derive a test of and the equality is fulfilled iff{ X} and{Y;} have proportional
proportiondity of the correlations of the process on the two seg- spectra. The basic idea in any version of the test of sphericity is
ments. This new test of stationarity is applied to test if the traffic that the hypothesis of proportiolitg can be rejected if the empiri-
measured on today’s broadband networks is stationary. The resultgal sphericity is significantly lower than one. The originality of our
that we obtain are connected to many previous works according towork consists in the generalization of the test of sphericity to the
which the traffic generated by modern high-speed networks is acomparison of the empirical spectra calculated on two neighbour

stationary and long-range dependent process. segments of the same time series.
Denote by{ X;}_, a finite length observation of a discrete
1. A NEW TEST OF STATIONARITY time stochastic procegsy: }. The observation may be partitioned
into two subsets within each of which the process is assumed to
1.1. Introduction be a second-order stationary and regular procéss. 1 < T

represents the presumed change point. Taking 0 andr, = T,
In [1] Mauchly introduces the sphericity statistics and he demon- the length of theath epochisT}, = 7, — 7.—1. AlthoughT,, is
strates how this statistics can be used to test whether two gaussiafinite, it is convenient to regard theth epoch as a realization of
random vectors have the same covariance matrix. In [2] and [3] an infinitely long proces$ X;"}. The sphericity statistics is then
Mokkadem generalizes the sphericity statistics to the case of time |, __. _ (det(RyRF Y)YV ‘ .
series. He proves that this statistics is an entropy ratio. He thenOIefIneOI as = 1/NTr(RyR; ") whereR; represents the Toeplitz
uses the statistics to test whether two processes have proportionahatrix whose elements are the correlationgk))o<x<y—1 Up to
spectra and to test whether a process has a given spectrum (wittag (N-1) of { X{} (defineR; = (pi(|k—!]))o<k<n—10<i<N 1)
the particular case of the test of whiteness). Our idea is to use ~ {X:} is observed on afinite window of length T. The tests will
the same statistics to test if a process is stationary. The basic ideahus be based on the empirical countergaxf S, the true cor-
is to compare the empirical correlations, up to a fixed lag, calcu- relationsp;(k) being replaced by the biased estimatpygc) =
lated on two segments of the same process. We prove that underL ZQ‘fH Xy Xegr — fi° wherep = A3 7 X,. The
the null hypothesis of stationarity the logarithm of the sphericity reas0n why we choose the biased estimators is that it guarantees
multiplied by the length of the observation window converges on y,e nositivity of the correlation matricé; and R». If moreover
a quadratic form in a multidimensional normal variable. We then X7}, n = 1,2 are two regular processes then the empirical cor-
derive a test of adequacy of the sequence of empirical correlations o |4tion matrices are definite with probability one. It is then pos-

The stationarity Is rejected if the (_empiric_al sphericity is in_ the_ dis- sible to consider the logarithm of the sphericity= log S and its
tant quantiles of the asymptotic distribution. The generalization of empirical counterpad = log 3.

the test of sphericity as a test of stationarity is to our best knowl-

edge original. o o o
1.3. A Central Limit Theorem for the sphericity statistics

1.2. The sphericity statistics The objective of this section is to derive a Central Limit Theorem
In [1] Mauchly defines the sphericity of two N-dimensional ran- (CLT) for d = log(5).

(det(zx NN , - 1 2
—————— whereXx and Assumption 1 The correlations of X} and of { X7} are pro-

r(ZxDot
TR portional up to lag (N-1)
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dom variables andY assS =




Assumption 2 {X.} is a-mixing with anx-mixing coefficientr, if 5 denotesy = (1, p2) thenv/T(p — p) andVT(p — p) are
that verifiesS 42 22/t 4 and with B X *T%) < asymptotically identically distributed.
+00. As we have mentioned previousdlyis aC°° function of 5.
~ (det(f%lf% ))
The Assumption 2 is verified by many usual processes and = ®(p) whered(p) = log 1/NTr(Ry R‘l)
in particular by Markov processes, these processes being geometi; denotes the Toeplitz matrix whose elements are(fhék)).
rically «-mixing (see for example [4]). It must be noticed that This permits the derivation of an asymptotic distribution result for
ARMA processes as well as Hidden Markov Models are particular d. The demonstration of this result is based on a Taylor develop-
cases of Markov chains and that the same mixing properties can bament of & at the pointp = (p1, p2). Under the null hypothesis
obtained by marginalization. For a survey about mixing processesof stationarity a development of ordeiis needed whereas under
and about the CLT for these processes we refer the reader to [5}the alternative hypothesis a development of ofdsuffices. The

In this expression

and the references therein. difference comes from the fact that under the null hypothesis the
term of orderl in the Taylor development ob is equal to zero
Theorem 1 If Asssumption 2 is true thelnX,; } verifiesa CLT since the function® is maximum at poinp = (p1,ap1). This

. results in a difference in the rate of convergence and also in the
1 asymptotic distribution under the two alternative hypotheses.
VI(F D Xe =) ~ AN(0, %) ymp P
=1 Theorem 3 Suppose that the technical Assumptions 2 and 3 hold.
wherep = E(X;) ando? = 3, B((X: — 10)(Xear — 1)) Then under the Assumption 1 of stationarity

. o . 2Td 5575 272 ®(p)ZwithZ ~ N(0,T
Remark that the logarithm of the sphericitys aC'® function @) (p)Zwi ©,1)

of the vectorp = (1, f2) wherep; = (pi(0), -+, pi(N — 1)). and under the alternative assumption

To prove a CLT ford we first prove thats verifies a CLT and R

we conclude by making a Taylor developmentipfit pointp = VT(d — ®(p)) ~ AN(0, V" (p)I'V(p))
(p1,ap1). To prove a CLT forp we need the additional technical

assumption whereV®(p) and V> ®(p) denote respectively the gradient and
the Hessian o taken at poinp.

—)-I—oo

Assumption 3 Ti "3 4oo andT;/T c; > 0.

We are now going to give the main points that are needed to
establish the expression & ® and of V2®. The only techni-
cal points that are needed are the expression of the derivative of
ol 0 > the determinant and of the inverse of a matrix M. These expres-

Theorem 2 If the Assumptions 1, 2 and 3 are true then

0 ol sions areA det(M) = det(M)Tr(M~'AM) andAM™" =

VT(p— p) ~ AN(0,T)withl = <
—~M™'AMM™!. The Hessian matriX’>®(p) depends o in

I" denoting theV x N matrix whose entryk, 1) is equal to a more complicated manner. Rather than deriving the analytical
", Mu(k, 7, 7+1) whereM. (k,1, m) denotes the fourth centered ~ expression o> ®(p) we suggest to simulate the Hessian matrix
moment of lagk,{, m) of {X:} that is to sayM4(k,l,m) = by small variations oV ®.

E((Xe = 1) (Xoarx = 1) (Xeqr = 1) (Xogm — p1))-
1.4. A new test of stationarity for time series

It is easily demonstrated that {X;} verifies the Assumption 2 ) ) . ]
then the proces§Y; } = {(X?, X; X141, , X: Xeyn_1)} ver- The test of stationarity that we propose relies on the first part of
ifies the Assumption 2 as well and that a CLT can consequently Theorem 3. Under the Assumption 1 and under thétihel tech-
be established fofY;}. Supposing that the Assumption 3 is true hical Assumptions 2 and 3 the statistitEd is asymptotically dis-
we easily get by application of the Theorem 1 a CLT for the vec- tributed as a quadratic form of a normally distributed vecj:}or De-
tor of unbiased estimators = (5;(0),--- ,7i(N — 1)) where no}}e by A ar;d B the squ%re rooglbiandvz’@( p),I'=AA
ﬁz(k) — TLZT, " XtXt+k: \/T(ﬁz _ Pi) ~ AN(O,Cz‘F). A7 AandV (I)( ) HBB B~ B, and denote by)\k)1<k<N

s . . the eigenvalues ot B(A™ B)¥. Then the first part of Theorem
Whatis morev/T(p; — j) converges in probability to zerowhen 3 a1 'he formulated in the following manner. If the Assumptions

T tends to infinity./T'(p: —p:) andv/T'(p; —p:) are consequently 1 2 and 3 are true then
equally distributed and/T'(p; — p;) ~ AN(0, ;).

We are now going to prove thefT (51— p1 ) andv/T (2 —p2)
are asymptotically independent; that will end the demonstration of
the Theorem 2. The demonstration of this pointis a bit more tech-
nical. In this contribution we mimic the approach of Epps [6]. Let
us introduce a sequence of integégs) that converges to infinity

N
oTd 1720 A Y whereY ~ N(0, Iy 1)
(d)

k=1

The Assumption 1 is then rejected if the obtained vallid is
- U > . in the distant quantiles of the asymptotic distribution. The reparti-
and that verifieg, = o(t) ast tends to infinity. The basicideaisto  ion function of the asymptotic distribution is computed by Monte-
omit the firstgr terms in the biased estimatgis andj.. Denote 4o simulations. One simulates many iid random variables dis-
by p: :~(p"(0) ~ o Pi(N —1)),0= 1,2 the new estimators ob-  yihyted ag™, A, Y2; the null hypothesis of stationarity is rejected
talned'pi( ) =7 2l 1+qT+1(Xf — 1) (Xe4r — f17) where if the proportion of cases where this random variable is greater
fli = 7= Y 1tr | 4gns1 Xt The assumptions opr guarantee  than27d is inferior toa, o being the false alarm probability that
that g, andp2 are mutually asymptotically independent and that is accepted.



Remark that the asymptotic covariance mattiis unknown. take into account the size of the packets. We only study the se-
Theorems 2 and 3 still hold if the asymptotic variance isaept guence of times between two consecutive packets in one direction.
by a consistent estimatoy is a consistent estimator gf This
result can be seen as a consequence of Theorem 2 by invokin
the second Borel-Cantelli's theorem. ConsequeRiy(s) and 2.2, Resuls of the tests

V2®(p) are consistent estimators &®(p) and of VZ®(p). It We use the test of sphericity to compare the first correlation coeffi-
remains to find a consistent estimatofdfl” is equal to the spec-  cients of many neighbour segments of LBL-PKT3. The experience
tral density function ofY; = (X7, -+, X¢X:yn-1)} taken at is replicated (i) separately for the packets entering the university
pointw = 0; one can therefore use the smoothed periodogram atand for the packets getting out of the university (i) for different
the frequencyw = 0 time-scales ranging from a few seconds to a few minutg$dr

two truncation orders (N=5 and N=15) (iv) and for ten pairs of
A 1t El o R H El o gEELy neighbour segments for each time scale, each truncation order and
I'= T Z w(k)%((Z(Yt =P T (Z(Yf =" T7)) each stream. By a time-scale of, say, one minute, we mean that
0 ! ! we compare two neighbour segments that last each thirty seconds;
that permits to come to a decision concerning the stationarity of
the first N correlation coefficients on the time-scale of one minute.
The results of our simulations are listed in Table 1. For all the
2. APPLICATION TO REAL-LIFE TELETRAFFIC pairs of neighbour segments we give the pralitghunder the hy-
pothesis of stationarity, that a random variable distributeri/as
when T tends to infinity is inferior to the val2d d that we obtain
In this section we investigate real-life traffic measured on today’s in practice. If this probability is inferior to the false alarm proba-
broadband networks. In the pastfew years high quality traffic mea- bility « = 0.05 then we decide that the segment is non stationary.
surements have become available and a large number of contribuThe segments for which we decide the non-stationarity correspond
tions have consecutively been devoted to the statistical study ofto the values that are underlined in Table 1. If the traffic were sta-
these data ([7],[8],[9].[10]...). The authors have got to the point tionary then for this false alarm probability 1 value out of 20 would
that the traffic is heavy tailed and long-range dependent no mat-be underlined.
ter what kind of traffic (WWW, video, LAN, WAN ...) and what
statistics (inter—arr_ival_times or block pf?u_:ket counts) they c_onsid- 2.3. Critical analysis of the results
ered. These contributions are very significant. The conclusions are
indeed at variance with the traditional models of traffic such as the The comparison of the N=15 first correlations coefficients and, to
Poisson process or the Markov Modulated Poisson Process. It cara lower extent, of the N=5 first correlation coefficients, reveals the
be demonstrated that in the case of long-range dependence qualitpresence of some non stationary segments. These non stationari-
measures such as the overflow probability or the average packeties are very frequent on the time scales of a few minutes. The tests
delay are strongly underestimated by the itiadal short-range were conducted for the same pairs of neighbour segments for the
dependent models. The challenge is then to propose realistic andruncation orders N=5 and N=15. It is clear on this example that
yet analytically tractable models and to elaborate routing policies the decision concerning the stationarity depends on the number of
that take advantage of the auto-similarity of the traffic. correlations that are taken into account. In some previous work
Our idea is that the traffic may not be a stationary and long- [12] we have tested the stationarity of the marginal distribution for
range dependent process but a short range dependent process thfie same pairs of neighbour segments as in the present work. For
exhibits some kinds of non-statioiit@s. Teverovsky and Taqqu the test on the marginal distribution the stationarity was rejected
[11] have indeed demonstrated recently that some kinds of nonvery violently for all the pairs of neighbour segments over a 13
stationarities (namely deterministic jumps or deterministic trends seconds time-scale. It is thus difficult to give a limit under which
in the mean) can lead, if they are not detected, to the untrue con-the traffic is stationary and over which the traffic is non stationary.
clusion that a time series is long-range dependent. In the abovedt depends of the quantities that are compared and of the part of
mentioned contributions the authors investigate minutes or eventhe trace that is considered.
hours of traffic, that is to say hundreds of thousands of packets;  One should remark that the Assumption 2 concerning the mix-
peculiarly these authors do not test if the measured traffic is sta-ing properties of the process is not verified if the process is long-
tionary on these time-scales. range dependent. This is a big problem since the test of sphericity
In what follows we expose the results of the application of the developed in Section 1 is consequently not valid if the true process
test of stationarity developed in this contribution to one of the data is long-range dependent. The test developed in this contribution
streams that are commonly studied in the litterature (LBL-PKT3, does not enable us to decide between non-stait@sand bng-
[9]). This data stream consists of the traffic measured at the gaterange dependence. Contrary to many authors who decide in favor
way of Berkeley’s university in 1994 during working hours. This of the long range dependence hypothesis we give a greater place to
trace was originally investigated by Paxson and Floyd [9]. The the hypothesis of non stationarity. This solution has indeed many
original trace lasts two hours and we take out seven minutes ofadvantages. One can benefit from queuing results and from esti-
traffic not long before 4pm. We study separately the data coming mation procedures that already exist for these models. This is not
into the university and the data getting out of the university. The the case when the measured traffic is modeled as a long-range de-
average time between two consecutive packets in one direction ispendent process. Our solution has proved to be fruitful. In some
equal to abouéms no matter which direction is considered. The previous work [12] we have indeed proposed to model the LBL-
traffic is composed of ftp, Network News, telnet, and mail data but PKT3 data stream as a locally stationary Hidden Markov Chain.
we do not distinguish between the different protocols. We neither This model has given us satisfying results in terms of overflow

with mr = \/Tandw(k) = lp—o + ﬁﬂlﬁkSmT‘

2.1. The data under investigation



Traffic coming into Berkeley’s university; N=5
6sec. 25sec. 1min. 2min. 3min.
9.1e-01| 3.7e-02 7.2e-01 1.9e-01 | 2.3e-02
4.7e-01| 4.0e-01 | 4.1e-01 6.1e-02 | 5.7e-01
6.8e-01| 9.9e-01 1.0e-01 2.3e-01 | 6.9e-01
8.0e-01| 3.1e-01 2.1e-01 4.3e-01 | 6.8e-02
3.4e-02| 6.3e-01 | 4.3e-01 5.1e-02 | 3.0e-03
3.0e-01| 9.3e-01 2.8e-01 4.0e-02 | 5.0e-04
7.9e-01| 4.5e-01 | 4.9e-01 1.0e-01 | 2.8e-03
6.7e-01| 7.2e-01 8.3e-01 6.8e-01 | 4.3e-01
8.2e-01| 5.6e-01 7.7e-02 1.8e-01 | 6.1e-01
7.0e-01| 7.0e-02 6.9e-01 2.5e-01 | 1.7e-01

Traffic getting out of Berkeley’s university; N=5
6sec. 25sec. 1min. 2min. 3min.
8.7e-01| 4.0e-01 8.9e-01 5.5e-01 | 1.6e-01
9.0e-01| 7.0e-01 1.4e-01 3.9e-01 | 2.5e-01
7.8e-01| 2.9e-01 | 4.3e-02 1.4e-01 | 3.4e-01
4.4e-01| 9.3e-01 5.9e-01 6.6e-01 | 6.7e-01
5.4e-01| 9.7e-01 9.2e-01 7.2e-02 | 4.8e-01

1 8.4e-01 8.9e-01 6.0e-01 | 4.2e-02
8.3e-01| 5.7e-01 1.2e-01 7.0e-02 | 2.6e-02
2.2e-01| 7.9e-01 3.3e-01 9.8e-01 | 1.1e-01
3.7e-01| 3.3e-01 9.5e-02 2.3e-01 | 4.8e-01
4.2e-01| 7.1e-01 1.9e-01 5.7e-01 | 8.6e-01
Traffic coming into Berkeley's university; N=15
6sec. 25sec. 1min. 2min. 3min.
8.5e-01| 1.1e-03 | 4.8e-01 2.4e-02 | <1.0e-03
7.5e-02| 1.8e-02 3.1e-02 8.0e-03 | 4.4e-01
6.8e-02| 9.9e-01 5.0e-03 2.7e-02 | 3.4e-01
4.4e-01| 6.9e-02 3.0e-03 3.8e-01 | <1.0e-03
2.2e-02| 8.2e-01 8.1e-02 | <1.0e-03| <1.0e-03
1.9e-02| 6.6e-01 1.9e-01 | <1.0e-03| <1.0e-03
7.7e-01| 8.8e-02 5.9e-02 1.9e-02 | <1.0e-03
7.4e-01| 1.3e-01 9.6e-01 4.0e-01 | 1.7e-01
5.2e-01| 1.1e-01 | <1.0e-03| 2.0e-02 | 3.7e-01
1.6e-01| <1.0e-03| 2.1e-01 1.3e-01 | 4.0e-03
Traffic getting out of Berkeley’s university; N=15
6sec. 25sec. 1min. 2min. 3min.
7.7e-01| 4.1e-02 6.5e-01 2.5e-01 | 4.1e-02
1.1e-01| 9.9e-02 6.0e-03 1.3e-01 | 8.6e-02
6.7e-02| 8.9e-02 1.0e-03 5.0e-03 | 1.1e-01
8.8e-01| 2.8e-01 9.1e-02 9.1e-02 | 4.7e-01
8.0e-02| 3.7e-01 2.3e-01 6.1e-01 | 3.1le-01
4.1e-01| 9.1e-01 | 4.1e-01 7.1e-01 | 7.1e-01
8.4e-01| 5.8e-02 2.0e-03 1.0e-03 | 1.0e-03
2.4e-01| 8.9e-01 1.1e-01 7.0e-01 | 7.0e-01
1.4e-01| 5.5e-01 2.5e-02 4.6e-01 | 5.1e-02
3.8e-02| 8.6e-02 | <1.0e-03| 1.9e-02 | 1.9e-02

Table 1: Tests of sphericity. Truncation orders N=5 and N=15.

probability, of adequacy of the marginal distribution and of ade-
quacy of the first correlation coefficients on the short time scales.

3. CONCLUSION

In this contribution we have proposed a new test of stationarity
for time series. We have established the asymptotic distribution
under the null hypothesis of stationarity and under the alternative
hypothesis of the normalized logarithm of the sphericity. The test
rejects the null hypothesis if the obtained value is in the distant
quantiles of the asymptotic distribution. We have then applied this
new test to some teletraffic data. We have reached the conclusion
that the assumptions of short range dependence and of stationar-
ity are contradictory.And we have compared our findings with the
work of many authors who affirm that the traffic measured on to-
day’s broadband networks is long range dependent.
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