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ABSTRACT

In this contribution we generalize the test of sphericity as a test of
stationarity for time-series. The sphericity statistics is in our case a
measure of distance between the empirical correlations calculated
on two contiguous segments of the same process. We prove that
under the hypothesis of stationarity the logarithm of the sphericity
converges in distribution to a quadratic form in a multidimensional
gaussian random variable with a convergence rate that is equal to
the length of the observation window. We then derive a test of
proportionality of the correlations of the process on the two seg-
ments. This new test of stationarity is applied to test if the traffic
measured on today’s broadband networks is stationary. The results
that we obtain are connected to many previous works according to
which the traffic generated by modern high-speed networks is a
stationary and long-range dependent process.

1. A NEW TEST OF STATIONARITY

1.1. Introduction

In [1] Mauchly introduces the sphericity statistics and he demon-
strates how this statistics can be used to test whether two gaussian
random vectors have the same covariance matrix. In [2] and [3]
Mokkadem generalizes the sphericity statistics to the case of time
series. He proves that this statistics is an entropy ratio. He then
uses the statistics to test whether two processes have proportional
spectra and to test whether a process has a given spectrum (with
the particular case of the test of whiteness). Our idea is to use
the same statistics to test if a process is stationary. The basic idea
is to compare the empirical correlations, up to a fixed lag, calcu-
lated on two segments of the same process. We prove that under
the null hypothesis of stationarity the logarithm of the sphericity
multiplied by the length of the observation window converges on
a quadratic form in a multidimensional normal variable. We then
derive a test of adequacy of the sequence of empirical correlations.
The stationarity is rejected if the empirical sphericity is in the dis-
tant quantiles of the asymptotic distribution. The generalization of
the test of sphericity as a test of stationarity is to our best knowl-
edge original.

1.2. The sphericity statistics

In [1] Mauchly defines the sphericity of two N-dimensional ran-

dom variablesX andY asS =
(det(�X��1

Y
))1=N

1=NTr(�X��1
Y

)
where�X and
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�Y denote the covariance matrices ofX andY . Mokkademgener-
alizes this definition for two independent random processesfXtg
andfYtg by definingS =

(det(�X��1Y ))1=N

1=NTr(�X��1Y )
where�X and�Y

denote the Toeplitz matrices of the correlations of the two pro-
cesses up to a fixed lag (N-1). One can demonstrate that when the
truncation order N tends to infinity then the sphericity tends to the
ratio ofexp(

R
A
log �X(!)�

�1
Y (!)d!) and of

R
A
�X(!)�

�1
Y (!)d!

(A =]� �;+�]). This quantity is always inferior or equal to one
and the equality is fulfilled ifffXtg andfYtg have proportional
spectra. The basic idea in any version of the test of sphericity is
that the hypothesis of proportionality can be rejected if the empiri-
cal sphericity is significantly lower than one. The originality of our
work consists in the generalization of the test of sphericity to the
comparison of the empirical spectra calculated on two neighbour
segments of the same time series.

Denote byfXtgTt=1 a finite length observation of a discrete
time stochastic processfXtg. The observation may be partitioned
into two subsets within each of which the process is assumed to
be a second-order stationary and regular process.1 < �1 < T
represents the presumed change point. Taking�0 = 0 and�2 = T ,
the length of thenth epoch isTn = �n � �n�1. AlthoughTn is
finite, it is convenient to regard then-th epoch as a realization of
an infinitely long processfXn

t g. The sphericity statistics is then

defined asS =
(det(R1R

�1
2 ))1=N

1=NTr(R1R
�1
2

)
whereRi represents the Toeplitz

matrix whose elements are the correlations(�i(k))0�k�N�1 up to
lag (N-1) offXi

tg (defineRi = (�i(jk�lj))0�k�N�1;0�l�N�1).
fXtg is observed on a finite window of length T. The tests will

thus be based on the empirical counterpartŜ of S, the true cor-
relations�i(k) being replaced by the biased estimators�̂i(k) =
1
Ti

P�i�k
�i�1+1

XtXt+k � �̂2 where �̂ = 1
Ti

P�i
�i�1+1

Xt. The
reason why we choose the biased estimators is that it guarantees
the positivity of the correlation matriceŝR1 andR̂2. If moreover
fXn

t g; n = 1; 2 are two regular processes then the empirical cor-
relation matrices are definite with probability one. It is then pos-
sible to consider the logarithm of the sphericityd = log S and its
empirical counterpart̂d = log Ŝ.

1.3. A Central Limit Theorem for the sphericity statistics

The objective of this section is to derive a Central Limit Theorem
(CLT) for d̂ = log(Ŝ).

Assumption 1 The correlations offX1
t g and offX2

t g are pro-
portional up to lag (N-1)

9� > 0= 80 � k � N � 1; �2(k) = ��1(k)



Assumption 2 fXtg is�-mixing with an�-mixing coefficient�n
that verifies

P+1
n=0 �

�=(2+�)
n < +1 and with E(jXtj2+�) <

+1.

The Assumption 2 is verified by many usual processes and
in particular by Markov processes, these processes being geomet-
rically �-mixing (see for example [4]). It must be noticed that
ARMA processes as well as Hidden Markov Models are particular
cases of Markov chains and that the same mixing properties can be
obtained by marginalization. For a survey about mixing processes
and about the CLT for these processes we refer the reader to [5]
and the references therein.

Theorem 1 If Asssumption 2 is true thenfXtg verifies a CLT

p
T (

1

T

TX
t=1

Xt � �) � AN (O; �2)

where� = E(X1) and�2 =
P

Z
E((Xt � �)(Xt+k � �))

Remark that the logarithm of the sphericityd̂ is aC1 function
of the vector�̂ = (�̂1; �̂2) where�̂i = (�̂i(0); � � � ; �̂i(N � 1)).
To prove a CLT ford̂ we first prove that̂� verifies a CLT and
we conclude by making a Taylor development of� at point� =
(�1; ��1). To prove a CLT for̂� we need the additional technical
assumption

Assumption 3 Ti
T!1! +1 andTi=T

T!+1! ci > 0.

Theorem 2 If the Assumptions 1, 2 and 3 are true then

p
T (�̂� �) � AN (0;�)with� =

�
c1� 0
0 c2�

�

� denoting theN �N matrix whose entry(k; l) is equal toP
Z
M4(k; �; �+l)whereM4(k; l;m) denotes the fourth centered

moment of lag(k; l; m) of fXtg that is to sayM4(k; l;m) =
E((Xt � �)(Xt+k � �)(Xt+l � �)(Xt+m � �)).

It is easily demonstrated that iffXtg verifies the Assumption 2
then the processfYtg = f(X2

t ;XtXt+1; � � � ;XtXt+N�1)g ver-
ifies the Assumption 2 as well and that a CLT can consequently
be established forfYtg. Supposing that the Assumption 3 is true
we easily get by application of the Theorem 1 a CLT for the vec-
tor of unbiased estimators��i = (��i(0); � � � ; ��i(N � 1)) where
��i(k) = 1

Ti

P�i
�i�1+1

XtXt+k:
p
T (��i � �i) � AN (0; ci�).

What is more
p
T (��i � �̂i) converges in probability to zero when

T tends to infinity.
p
T (��i��i) and

p
T (�̂i��i) are consequently

equally distributed and
p
T (�̂i � �i) � AN (0; ci�).

We are now going to prove that
p
T (�̂1��1) and

p
T (�̂2��2)

are asymptotically independent; that will end the demonstration of
the Theorem 2. The demonstration of this point is a bit more tech-
nical. In this contribution we mimic the approach of Epps [6]. Let
us introduce a sequence of integers(qt) that converges to infinity
and that verifiesqt = o(t) ast tends to infinity. The basic idea is to
omit the firstqT terms in the biased estimators�̂1 and�̂2. Denote
by ~�i = (~�i(0); � � � ; ~�i(N � 1)); i = 1; 2 the new estimators ob-
tained:~�i(k) = 1

Ti

P�i
t=�i�1+qT+1

(Xt� ~�i)(Xt+k � ~�i) where

~�i = 1
Ti

P�i
t=�i�1+qT+1

Xt. The assumptions onqT guarantee
that ~�1 and ~�2 are mutually asymptotically independent and that

if ~� denotes~� = (~�1; ~�2) then
p
T (~� � �) and

p
T (�� � �) are

asymptotically identically distributed.
As we have mentioned previouslŷd is aC1 function of �̂.

d̂ = �(�̂) where�(�̂) = log
(det(R̂1R̂

�1
2

))1=N

1=NTr(R̂1R̂
�1
2

)
. In this expression

R̂i denotes the Toeplitz matrix whose elements are the(�̂i(k)).
This permits the derivation of an asymptotic distribution result for
d̂. The demonstration of this result is based on a Taylor develop-
ment of� at the point� = (�1; �2). Under the null hypothesis
of stationarity a development of order2 is needed whereas under
the alternative hypothesis a development of order1 suffices. The
difference comes from the fact that under the null hypothesis the
term of order1 in the Taylor development of� is equal to zero
since the function� is maximum at point� = (�1; ��1). This
results in a difference in the rate of convergence and also in the
asymptotic distribution under the two alternative hypotheses.

Theorem 3 Suppose that the technical Assumptions 2 and 3 hold.
Then under the Assumption 1 of stationarity

2T d̂
T!1!(d) Z

Hr2�(�)ZwithZ � N (0;�)

and under the alternative assumption
p
T (d̂��(�)) � AN (0;r�H(�)�r�(�))

wherer�(�) andr2�(�) denote respectively the gradient and
the Hessian of� taken at point�.

We are now going to give the main points that are needed to
establish the expression ofr� and ofr2�. The only techni-
cal points that are needed are the expression of the derivative of
the determinant and of the inverse of a matrix M. These expres-
sions are�det(M) = det(M)Tr(M�1�M) and�M�1 =
�M�1�MM�1. The Hessian matrixr2�(�) depends on� in
a more complicated manner. Rather than deriving the analytical
expression ofr2�(�) we suggest to simulate the Hessian matrix
by small variations onr�.

1.4. A new test of stationarity for time series

The test of stationarity that we propose relies on the first part of
Theorem 3. Under the Assumption 1 and under the additional tech-
nical Assumptions 2 and 3 the statistics2T d̂ is asymptotically dis-
tributed as a quadratic form of a normally distributed vector. De-
note by A and B the square roots of� andr2�(�), � = AAH =
AHA andr2�(�) = BBH = BHB, and denote by(�k)1�k�N
the eigenvalues ofAHB(AHB)H . Then the first part of Theorem
3 can be formulated in the following manner. If the Assumptions
1, 2 and 3 are true then

2T d̂
T!1!(d)

NX
k=1

�kY
2
k whereY � N (0; IN ) (1)

The Assumption 1 is then rejected if the obtained value2T d̂ is
in the distant quantiles of the asymptotic distribution. The reparti-
tion function of the asymptotic distribution is computed by Monte-
Carlo simulations. One simulates many iid random variables dis-
tributed as

P
k �kY

2
k ; the null hypothesis of stationarity is rejected

if the proportion of cases where this random variable is greater
than2T d̂ is inferior to�, � being the false alarm probability that
is accepted.



Remark that the asymptotic covariance matrix� is unknown.
Theorems 2 and 3 still hold if the asymptotic variance is replaced
by a consistent estimator.̂� is a consistent estimator of�. This
result can be seen as a consequence of Theorem 2 by invoking
the second Borel-Cantelli’s theorem. Consequentlyr�(�̂) and
r2�(�̂) are consistent estimators ofr�(�) and ofr2�(�). It
remains to find a consistent estimator of�. � is equal to the spec-
tral density function offYt = (X2

t ; � � � ;XtXt+N�1)g taken at
point! = 0; one can therefore use the smoothed periodogram at
the frequency! = 0

�̂ =
1

T

+mTX
0

w(k)<((
TX
1

(Yt � �̂)ej
k+1
T t)H(

TX
1

(Yt � �̂)ej
k+1
T t))

with mT =
p
T andw(k) = 1Ik=0 + 2

2mT +1
1I1�k�mT

.

2. APPLICATION TO REAL-LIFE TELETRAFFIC

2.1. The data under investigation

In this section we investigate real-life traffic measured on today’s
broadband networks. In the past few years high quality traffic mea-
surements have become available and a large number of contribu-
tions have consecutively been devoted to the statistical study of
these data ([7],[8],[9],[10]...). The authors have got to the point
that the traffic is heavy tailed and long-range dependent no mat-
ter what kind of traffic (WWW, video, LAN, WAN ...) and what
statistics (inter-arrival times or block packet counts) they consid-
ered. These contributions are very significant. The conclusions are
indeed at variance with the traditional models of traffic such as the
Poisson process or the Markov Modulated Poisson Process. It can
be demonstrated that in the case of long-range dependence quality
measures such as the overflow probability or the average packet
delay are strongly underestimated by the traditional short-range
dependent models. The challenge is then to propose realistic and
yet analytically tractable models and to elaborate routing policies
that take advantage of the auto-similarity of the traffic.

Our idea is that the traffic may not be a stationary and long-
range dependent process but a short range dependent process that
exhibits some kinds of non-stationarities. Teverovsky and Taqqu
[11] have indeed demonstrated recently that some kinds of non
stationarities (namely deterministic jumps or deterministic trends
in the mean) can lead, if they are not detected, to the untrue con-
clusion that a time series is long-range dependent. In the above-
mentioned contributions the authors investigate minutes or even
hours of traffic, that is to say hundreds of thousands of packets;
peculiarly these authors do not test if the measured traffic is sta-
tionary on these time-scales.

In what follows we expose the results of the application of the
test of stationarity developed in this contribution to one of the data
streams that are commonly studied in the litterature (LBL-PKT3,
[9]). This data stream consists of the traffic measured at the gate-
way of Berkeley’s university in 1994 during working hours. This
trace was originally investigated by Paxson and Floyd [9]. The
original trace lasts two hours and we take out seven minutes of
traffic not long before 4pm. We study separately the data coming
into the university and the data getting out of the university. The
average time between two consecutive packets in one direction is
equal to about6ms no matter which direction is considered. The
traffic is composed of ftp, Network News, telnet, and mail data but
we do not distinguish between the different protocols. We neither

take into account the size of the packets. We only study the se-
quence of times between two consecutive packets in one direction.

2.2. Results of the tests

We use the test of sphericity to compare the first correlation coeffi-
cients of many neighbour segments of LBL-PKT3. The experience
is replicated (i) separately for the packets entering the university
and for the packets getting out of the university (ii) for different
time-scales ranging from a few seconds to a few minutes (iii) for
two truncation orders (N=5 and N=15) (iv) and for ten pairs of
neighbour segments for each time scale, each truncation order and
each stream. By a time-scale of, say, one minute, we mean that
we compare two neighbour segments that last each thirty seconds;
that permits to come to a decision concerning the stationarity of
the first N correlation coefficients on the time-scale of one minute.

The results of our simulations are listed in Table 1. For all the
pairs of neighbour segments we give the probability, under the hy-
pothesis of stationarity, that a random variable distributed as2T d̂

when T tends to infinity is inferior to the value2T d̂ that we obtain
in practice. If this probability is inferior to the false alarm proba-
bility � = 0:05 then we decide that the segment is non stationary.
The segments for which we decide the non-stationarity correspond
to the values that are underlined in Table 1. If the traffic were sta-
tionary then for this false alarm probability 1 value out of 20 would
be underlined.

2.3. Critical analysis of the results

The comparison of the N=15 first correlations coefficients and, to
a lower extent, of the N=5 first correlation coefficients, reveals the
presence of some non stationary segments. These non stationari-
ties are very frequent on the time scales of a few minutes. The tests
were conducted for the same pairs of neighbour segments for the
truncation orders N=5 and N=15. It is clear on this example that
the decision concerning the stationarity depends on the number of
correlations that are taken into account. In some previous work
[12] we have tested the stationarity of the marginal distribution for
the same pairs of neighbour segments as in the present work. For
the test on the marginal distribution the stationarity was rejected
very violently for all the pairs of neighbour segments over a 13
seconds time-scale. It is thus difficult to give a limit under which
the traffic is stationary and over which the traffic is non stationary.
It depends of the quantities that are compared and of the part of
the trace that is considered.

One should remark that the Assumption 2 concerning the mix-
ing properties of the process is not verified if the process is long-
range dependent. This is a big problem since the test of sphericity
developed in Section 1 is consequently not valid if the true process
is long-range dependent. The test developed in this contribution
does not enable us to decide between non-stationarities and long-
range dependence. Contrary to many authors who decide in favor
of the long range dependence hypothesis we give a greater place to
the hypothesis of non stationarity. This solution has indeed many
advantages. One can benefit from queuing results and from esti-
mation procedures that already exist for these models. This is not
the case when the measured traffic is modeled as a long-range de-
pendent process. Our solution has proved to be fruitful. In some
previous work [12] we have indeed proposed to model the LBL-
PKT3 data stream as a locally stationary Hidden Markov Chain.
This model has given us satisfying results in terms of overflow



Traffic coming into Berkeley’s university; N=5
6sec. 25sec. 1min. 2min. 3min.

9.1e-01 3.7e-02 7.2e-01 1.9e-01 2.3e-02
4.7e-01 4.0e-01 4.1e-01 6.1e-02 5.7e-01
6.8e-01 9.9e-01 1.0e-01 2.3e-01 6.9e-01
8.0e-01 3.1e-01 2.1e-01 4.3e-01 6.8e-02
3.4e-02 6.3e-01 4.3e-01 5.1e-02 3.0e-03
3.0e-01 9.3e-01 2.8e-01 4.0e-02 5.0e-04
7.9e-01 4.5e-01 4.9e-01 1.0e-01 2.8e-03
6.7e-01 7.2e-01 8.3e-01 6.8e-01 4.3e-01
8.2e-01 5.6e-01 7.7e-02 1.8e-01 6.1e-01
7.0e-01 7.0e-02 6.9e-01 2.5e-01 1.7e-01

Traffic getting out of Berkeley’s university; N=5
6sec. 25sec. 1min. 2min. 3min.

8.7e-01 4.0e-01 8.9e-01 5.5e-01 1.6e-01
9.0e-01 7.0e-01 1.4e-01 3.9e-01 2.5e-01
7.8e-01 2.9e-01 4.3e-02 1.4e-01 3.4e-01
4.4e-01 9.3e-01 5.9e-01 6.6e-01 6.7e-01
5.4e-01 9.7e-01 9.2e-01 7.2e-02 4.8e-01

1 8.4e-01 8.9e-01 6.0e-01 4.2e-02
8.3e-01 5.7e-01 1.2e-01 7.0e-02 2.6e-02
2.2e-01 7.9e-01 3.3e-01 9.8e-01 1.1e-01
3.7e-01 3.3e-01 9.5e-02 2.3e-01 4.8e-01
4.2e-01 7.1e-01 1.9e-01 5.7e-01 8.6e-01

Traffic coming into Berkeley’s university; N=15
6sec. 25sec. 1min. 2min. 3min.

8.5e-01 1.1e-03 4.8e-01 2.4e-02 �1.0e-03
7.5e-02 1.8e-02 3.1e-02 8.0e-03 4.4e-01
6.8e-02 9.9e-01 5.0e-03 2.7e-02 3.4e-01
4.4e-01 6.9e-02 3.0e-03 3.8e-01 �1.0e-03
2.2e-02 8.2e-01 8.1e-02 �1.0e-03 �1.0e-03
1.9e-02 6.6e-01 1.9e-01 �1.0e-03 �1.0e-03
7.7e-01 8.8e-02 5.9e-02 1.9e-02 �1.0e-03
7.4e-01 1.3e-01 9.6e-01 4.0e-01 1.7e-01
5.2e-01 1.1e-01 �1.0e-03 2.0e-02 3.7e-01
1.6e-01 �1.0e-03 2.1e-01 1.3e-01 4.0e-03

Traffic getting out of Berkeley’s university; N=15
6sec. 25sec. 1min. 2min. 3min.

7.7e-01 4.1e-02 6.5e-01 2.5e-01 4.1e-02
1.1e-01 9.9e-02 6.0e-03 1.3e-01 8.6e-02
6.7e-02 8.9e-02 1.0e-03 5.0e-03 1.1e-01
8.8e-01 2.8e-01 9.1e-02 9.1e-02 4.7e-01
8.0e-02 3.7e-01 2.3e-01 6.1e-01 3.1e-01
4.1e-01 9.1e-01 4.1e-01 7.1e-01 7.1e-01
8.4e-01 5.8e-02 2.0e-03 1.0e-03 1.0e-03
2.4e-01 8.9e-01 1.1e-01 7.0e-01 7.0e-01
1.4e-01 5.5e-01 2.5e-02 4.6e-01 5.1e-02
3.8e-02 8.6e-02 � 1.0e-03 1.9e-02 1.9e-02

Table 1: Tests of sphericity. Truncation orders N=5 and N=15.

probability, of adequacy of the marginal distribution and of ade-
quacy of the first correlation coefficients on the short time scales.

3. CONCLUSION

In this contribution we have proposed a new test of stationarity
for time series. We have established the asymptotic distribution
under the null hypothesis of stationarity and under the alternative
hypothesis of the normalized logarithm of the sphericity. The test
rejects the null hypothesis if the obtained value is in the distant
quantiles of the asymptotic distribution. We have then applied this
new test to some teletraffic data. We have reached the conclusion
that the assumptions of short range dependence and of stationar-
ity are contradictory.And we have compared our findings with the
work of many authors who affirm that the traffic measured on to-
day’s broadband networks is long range dependent.
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