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ABSTRACT

Maximum Likelihood (ML) modeling of multiclass data for
classi�cation often su�ers from the following problems: a)
data insu�ciency implying overtrained or unreliable models
b) large storage requirement c) large computational require-
ment and/or d) ML is not discriminating between classes.
Sharing parameters across classes (or constraining the para-
meters) clearly tends to alleviate the �rst three problems. It
this paper we show that in some cases it can also lead to
better discrimination (as evidenced by reduced misclassi�ca-
tion error). The parameters considered are the means and
variances of the gaussians and linear transformations of the
feature space (or equivalently the gaussian means). Some con-
straints on the parameters are shown to lead to Linear Dis-
crimination Analysis (a well-known result) while others are
shown to lead to optimal feature spaces (a relatively new re-
sult). Applications of some of these ideas to the speech recog-
nition problem are also given.

1. INTRODUCTION

Modeling data using Gaussian or Gaussian mixture distribu-
tions is very common in many applications. This popularity
stems partially from the fact that any distribution can be ap-
proximated by gaussian mixtures and partially from the fact
that a rich set of mathematical results and computational
techniques are available for using gaussian distributions.
In this paper we consider modeling data using gaussians

for classi�cation applications. The basic problem is the fol-
lowing: Given labeled training data how does one model it
\well" for classi�cation applications. An implicit assumption
here is that the training data and the test data have the same
underlying statistical distributions. With this assumption, it
is reasonable to try and model the training data as well as
possible. The Maximum Likelihood (ML) Principle is the cri-
terion of choice in this paper. Some dissimilarities between
the training data and test data can be accounted for by para-
metrically adapting the the trained models. In this case, the
ML principle is invoked on the test data: adaptation parame-
ters are chosen to maximize the likelihood of the test data.
The focus of this paper is parametric modeling of training

or test data with gaussian distributions using the ML princi-
ple. If the data is modeled with gaussian mixtures, then each
data sample can probabilistically assigned to the gaussians
and a similar analysis as below can be carried out. Using
the EM algorithm these assignment probabilities can be iter-
atively re�ned [5].

The main idea emphasized in this paper is that in con-
strained ML modeling (eg., diagonal covariances) there are
optimal feature spaces in which to model the classes. The
author was �rst exposed to this idea in [1]; it is also explored
in a less general form with a set of e�cient algorithms in [2].
The training data is a collection of N independent la-

beled vectors (xi; li), xi 2 IRd, li 2 f1; 2; : : : ; Jg and i 2
f1; 2; : : : ;Ng. Each class j 2 f1; 2; : : : ; Jg is modeled by a
Gaussian distribution with mean �j and covariance �j. The
likelihood of the data is given by

p(xN1 ; f�jg ; f�jg) =
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In ML modeling the idea is to choose the parameters f�jg
and f�jg so as to maximize p(xN1 ; f�jg ; f�jg). For later
use it is convenient to organize classes into K class clus-

ters with the cluster identity cj 2 f1; 2; : : : ;Kg. Notice that
p(xN1 ; f�jg ; f�jg) can be expressed as follows [1, 2, 3]:
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where ��j and ��j are the sample means and covariances re-

spectively of the classes and a(N;d) = (2�)�
Nd
2 .

Now consider linearly transforming the samples from each
class: yi = Alixi, where Aj is a non-singular d � d matrix.
This gives an new dataset (yi; li) which can also be modeled
with gaussians. However, it is di�cult to compare the likeli-
hood of a test data sample coming from the classes when the
classes are modeled in the transformed space. The problem is
one of scaling: one can always choose Aj such that the like-
lihood of data from class j is arbitrarily large. Two obvious
approaches to compare likelihoods suggest themselves. One is
to ensure that jAjj = 1 for every class, in which case the likeli-
hood of the data corresponding to each class is the same in the
original and transformed spaces (implying p(xN1 ) = p(yN1 )).
The second is to only consider the likelihood in the original
space (i.e., p(xN1 )) even though the data is modeled in the
transformed space. In this case it is easy to show that

p(xN1 ; f�jgx ; f�jgx) = p(yN1 ; f�jgy ; f�jgy)
JY

j=1

jAjjNj ;



which again shows that ensuring jAjj = 1 ensures that the
likelihoods are the same. Is there any advantage in mod-
eling yN1 rather than xN1 ? If the data is modeled using full-
covariance gaussians, then, it makes no di�erence. However, if
one constrains the variances to be structured (block-diagonal
or diagonal, for example), then, the transformations can be
used to �nd the basis in which this structural constraint on
the variances is \more valid" as evidenced from the data.

2. SINGLE CLASS

Consider ignoring the class labels and modeling the entire
data with one gaussian: (�;�) (with one class there is
no longer a classi�cation problem; however, the discussion,
should bring out the key ingredients in the multiclass prob-
lem). Then from Eqn. 2, pone(x

N
1 ; �;�) can be expressed as
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where �� and �� are the global mean and covariance of the data.
Clearly, pone(x

N
1 ; �;�) is maximized by the ML estimates �̂ =

�� and �̂ = ��, whence the ML value of the training data is
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where g(N; d) = (2�e)�
Nd
2 . On average each sample con-

tributes ��� 1

2 to the ML value p?one(x
N
1 ), which, depends only

on the training data.

2.1. Linear Transformations of the Data

Consider a global non-singular linear transformation of the
data: yi = Axi. If (��; ��) and (��y; ��y) denote the sample
mean and covariance respectively (abuse of notation!!) in the
two spaces, then, ��y = A�� and ��y = A��AT . The maximum
likelihood values in the two spaces are related as expected:
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If jAj = 1 then p?(yN1 ) = p?(xN1 ). Essentially, the ML value
is invariant to unimodular or volume-preserving linear trans-
formations of the data.

2.2. Constrained ML - Diagonal Covariance

If we are constrained to use a diagonal covariance model,
Eqn. 3 is maximized by the estimates �̂ = �� and �̂ = diag(��).
The ML value is given by

p
?
diag(x
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1 ) = p(xN1 ; ��; diag(��)) = g(N;d)

��diag(��)
���N

2 :

Because of the diagonal constraint on the covariances,
p?diag(x

N
1 ) � p?(xN1 ), which interestingly gives a proof of

Hadamard's inequality for symmetric non-negative de�nite
matrices:

��diag(��)
�� �

����
��.

If one linearly transforms the data (yi = Axi) and models
yN1 using a diagonal gaussian then ML value is
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2 :

The best ML value is a function of the transformation A which
is assumed to be unimodular. One can maximize this over A
to obtain the best feature space in which to model with the
diagonal covariance constraint. By inspection it is easy to see

one optimal choice of A: A = UT , where ��x = U�UT is the
eigendecomposition of ��. With this choice
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In other words, in the transformed space there is no loss in
likelihood relative to full-covariance modeling.

3. MULTICLASS MODELING

In this case the training data is modeled with a Gaussian for
each class: (�j;�j). One can split the data into J classes
and model each one separately. Hence the ML estimates are
�̂j = ��j, �̂j = ��j and the ML value is

p
?(xN1 ) = p(xN1 ; f��jg ;

�
��j

	
) = g(N;d)
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Notice that the ML estimates of the parameters for each are
obtained solely based on the examples from the class. There
is \no interaction" between the classes and therefore uncon-
strained ML modeling is not \discriminating" between the
classes.
Each class can be modeled in its own feature space using

unimodular transformations as discussed earlier. However,
this does not change the ML value or help in better classi�-
cation.

3.1. Constrained ML - Diagonal Covariance

In this case the ML estimates are �̂j = ��j, �̂j = diag(��j),
and the ML value is
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If one linearly transforms the data from each class with a
matrix Aj, and then models it with a diagonal gaussian the
ML value of likelihood is
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Equivalently the likelihood of the data in the original space is
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By choosing Aj to be the eigenbasis of ��j, p
?
diag(x

N
1 ) achieves

the value p?(xN1 ), the likelihood of full-covariance modeling.

3.2. Multiclass ML Modeling - Some Issues

Firstly, if the sample size for each class (Nj) is not large
enough then the ML parameter estimates may have large vari-
ance and hence be unreliable. Secondly, the storage require-
ments for the model is O(Jd2) - either you have to store the
full-covariance or the diagonal covariance and its associated
optimal feature space transform. Thirdly, in order to compute
the likelihood of some test data using this model the compu-
tational requirement is O(Jd2): either you have to transform
the data samples for each class and evaluate a diagonal gauss-
ian or you have to evaluate a full-covariance Gaussian for each



sample. Finally, the parameters for each class are obtained
independently: ML principle does not allow for discrimination
between the classes.
If we share parameters across classes then it reduces a) the

number of parameters b) storage requirements c) computa-
tional requirements and sometimes d) is more discriminating
leading to better classi�ers. Claim d) is hard to justify with-
out quantifying what we mean by discrimination. However,
in some cases we will appeal to the Fischer-heuristic of Linear
Discrimination Analysis and a result of Campbell to argue
that sometimes constrained ML modeling is discriminating
between classes [4, 1].

We have already seen that by imposing diagonal Gaussian
models in the original feature space the number of parameters
and the storage and computational requirements are reduced
substantially. However, this comes with a loss in likelihood.
Moreover, it is not discriminatory since the model parameters
for the classes are estimated independently. We can globally
transform the data with a unimodular matrix A and model
the transformed data with diagonal gaussians. In this case
too there is a loss in likelihood. If, among all possible trans-
formations A, we can choose the one that takes the least loss
in likelihood, in essence we will be �nding a linearly trans-
formed (shared) feature space in which the diagonal gaussian
assumption is most valid (in the sense of least loss in likeli-
hood). This is the main idea emphasized in this paper. We
now look at some examples of constrained ML estimation with
sharing of parameters.

3.3. Constrained ML - Equal Covariances

Here all the covariances are assumed to be equal. The ML
estimates are �̂j = ��j and �̂ = W =

P
j
Nj

��j. W is the so-

called within-class-covariance. The sample covariance of the
entire data (i.e., all N samples) is the sum of the within-class-
covariance and between-class-covariance:

�� = W +B =
X

j
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1
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Each sample on average contributes 1p
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to the likelihood

and the ML value is
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Clearly p?(xN1 ) � p?eq(x
N
1 ) (since the later imposes the equal

covariance constraint and constraints can only reduce likeli-
hood) and this gives a proof of the fact that the log of the
determinant of a symmetric non-negative-de�nite matrix is
concave. Indeed from Eqn. 8 and Eqn. 7
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Also, since p?eq(x
N
1 ) � p?one(x

N
1 ) we get the following inequal-

ity for non-negative de�nite matrices W and B:

jW j � jW +Bj : (10)

3.4. Equal Covariance Clusters

Classes are organized into clusters and each cluster modeled
with a single mean or collection of means and a single co-
variance. In the former case the data can be relabeled using
cluster labels (mi = cli) and ML estimates and ML values
can be obtained as before for the full-covariance multiclass
case. In the latter case (of per class mean but per cluster
full-covariance), the data can be split into K groups; in which
case this essentially becomes the \equal-covariance" problem
for each group.

3.5. Diagonal Covariances and Class Cluster Trans-
formations

Again classes are grouped into clusters. Each cluster is mod-
eled with a diagonal gaussian in a transformed feature space.
That is yi = Acli

xi and yN1 is modeled with a diagonal gaus-
sians. The ML estimates in the original feature space are given
by �̂j = ��j, �̂j = A�1

cj diag(Acj
��jA

T
cj )A

T
cj and the ML value

in the original feature space is
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One can choose the best feature space for each class cluster
by maximizing over the Ak's, k 2 f1; 2; : : : ;Kg. Notice that
the Ak for each class cluster is obtained independently. In
the extreme case where the number of clusters is one (i.e.,
K = 1), there is single global transformation and the classes
are modeled as diagonal gaussians in this feature space. The
optimal A can be obtained by optimization as follows:

A = argmaxA jAjN
JY
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��diag(A ��jA
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2 : (12)

Di�erentiating the log of the objective function with respect
to A and setting it to zero we get

X

j

Nj(diag(A��jA
T ))�1A��j = N(AT )�1:

Either one can numerically optimize the objective function or
solve the above nonlinear equation numerically. For e�cient
(time or memory) algorithms see [3].

3.6. Equal Covariances and Reduced-Rank Means -
LDA

An interesting connection between ML modeling and Lin-
ear Discriminant Analysis was noticed by Campbell [4]. If
the class covariances are equal and the means lie in a p-
dimensional a�ne subspace S � IRd (obviously p � min(J �
1; d)) the estimates of the means and the common covariance
are projections of the sample means and the within class-
covariance onto the top p LDA directions. In this case, the
parameters are � and �j , with Span f�jg p-dimensional. The
ML estimates are given by [4] �̂j = WLLT (��j � ��) + �� and

�̂j = W +
P

j

Nj

N
(��j � �̂j)(��j � �̂j)

T , where L is the ma-

trix of p leading eigenvectors of W�1B (or LDA directions).
This suggests that a formulation of ML with unequal covari-
ances should, being a generalization of LDA, lead to better
discrimination; an idea explored by Kumar in [1] where the



development can easily be seen to imply the results of the
previous section as a special case.

4. SOME ADDITIONAL CONSTRAINTS

Eqn. 2 allows one to readily see the expressions for several
additional constraints. For example, consider ML estimation
of (A; b), where the means are assumed to be of the form
A�j + b and the variances are known. Clearly from Eqn. 2,
(A; b) can be obtained by solving the linear equations cor-
responding to minimizing the quadratic

P
j
Nj(��j � A�j �

b)T��1
j (��j�A�j�b). This is the basic idea in the MLLR tech-

nique of adaptation of gaussian means which is widely used in
speaker/environment adaptation in speech recognition [7]. As
another example, consider ML estimates of variances of the
form �j = ADjA

T (with known means and known diagonal
matrices Dj). This is useful in adapting the diagonal gaussian
model variances to test data, for instance. From Eqn. 2 this
corresponds to minimizing the following expression over A:
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where �j and Dj are prior information about the means and
variances (from training data, say), and ��j and ��j are sam-
ple means and covariances from the test data (see [3], where
e�cient algorithms are also given).

5. SPEECH RECOGNITION EXPERIMENTS

A study of optimal feature spaces for diagonal gaussian mod-
eling was carried out in the context of the ARPA Hub4 Broad-
cast News (BN) speech recognition task. The baseline recog-
nition system ([9]) had 3500 classes (HMM states) modeled by
gaussian mixtures (a total of 90K gaussians) in IR60 obtained
by double-rotation (a variant of LDA) of cepstral features de-
rived from the speech data [8]. The training data consisted
of N � 24M labeled samples. Because of data insu�ciency
and storage cost, sample covariances were computed only at
the HMM state level. In other words, for computing the op-
timal feature spaces the classes were assumed to be modeled
by gaussians (rather than gaussian mixtures). The optimal
spaces were obtained by numerically optimizing Eqn. 11 using
a conjugate gradient method with analytic gradient supplied.
Once the spaces are known, using standard techniques, the
classes were modeled by gaussian mixtures. The test data
consisted of the planned speech (F0) and spontaneous speech
(F1) portions of the 1996 DARPA Hub4 evaluation test. Re-
sults of two experiments are shown in Table 5. showing a sig-
ni�cant gain in accuracy. The �rst experiment used a single
feature space transform (i.e., single cluster), while the second
used four class clusters; one each for the HMM states of the
following sounds a) stop-consonants and aps, b) fricatives,
c) vowels and dipthongs d) nasals, glides and silence. The
single cluster case performs better than the four cluster case.
In fact several experiments with phonetic unit as clusters (51
clusters) and sub-phonetic units as clusters (153 clusters) were
attempted with marginal gains at best over the single cluster
case. This example seems to suggest that sharing between
classes (in this case feature spaces for class clusters) seems to
lead to better classi�cation and hence discrimination.

Expt F0 (planned) F1(spontaneous)
Baseline 21.1 29.1
1 Transform 19.3 28.4
4 Transforms 19.4 29.0

Table 1. % Word Error Rate Using Optimal Fea-
ture Spaces for Diagonal Gaussian Modeling of HMM
state clusters: a) Baseline b) Single feature space c)
Four class cluster feature spaces.

6. CONCLUSION

This paper describes several issues in ML modeling with gaus-
sians. In particular it shows that constrained gaussian mod-
eling can (depending on the constraint) lead to LDA or opti-
mal feature spaces for modeling classes. Sharing parameters
leads to advantages in robustness, computation, storage, and
perhaps discrimination. Well-known matrix inequalities are
introduced in the context of ML modeling. Some forms of
constrained ML estimation of gaussians are essentially meth-
ods for adapting means and/or variances of trained models to
maximize the likelihood of test data. An application of the
optimal feature space idea to the speech recognition problem
is shown to give signi�cant improvements to baseline word
error rate.
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