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ABSTRACT
A fixed filter may be converted into an adaptive filter with a
single adaptation parameter through the use of a new
Adaptive Heterodyne Filter (AHF) concept in which the
frequency of the heterodyne signal is adjusted thereby
translating the entire filter transfer function in frequency.  If
the fixed filter is selected to be a very narrow-band band-pass
filter, the new AHF concept can be used very effectively in
the elimination of narrow band interference in wide-band
communications or control systems.  A specific example of
the removal of a slow-moving time-varying mechanical
resonance from the control signal for a flight control system
demonstrates the power of the new AHF concept.

1. INTRODUCTION

Narrow-band interference is a common problem in modern
communications and control applications.  In Frequency-
Hoping Spread-Spectrum (FHSS) and Direct-Sequence
Spread-Spectrum (DSSS) communications systems, security
and efficient channel usage are achieved by spreading the
energy of the communications signal across a wide band of
frequencies allowing for simultaneous use of the channel by
multiple users [1, 2, 3, 4].  However, strong narrow-band
signals from standard AM and FM radio transmissions within
the communications channel can make it impossible to detect
the spread-spectrum signal [5, 6, 7, 8].  Similarly, in many
control applications a narrow-band signal from a mechanical
resonance can interfere with the feedback control signals
from various transducers making it impossible to detect and
control the parameters of the plant [9, 10].  In many of these
situations it is not possible to use a fixed filter to eliminate
the narrow-band interference because either there are many
interfering signals popping on and off at different times and
frequencies or the frequency of the narrow-band interfering
signals is time-varying such as the case of a mechanical
resonance varying in frequency as temperature changes [9].
In these situations, an adaptive narrow-band filter for
detection and attenuation of the narrow-band interference is
required.

2. ADAPTIVE HETERODYNE FILTER

2.1 Basic Concept

The basic concept of the Adaptive Heterodyne Filter (AHF) is
quite simple.  As in a super-heterodyne radio receiver and
Intermediate Frequency (IF) signal is mixed (heterodyned)
with the incoming signal to translate the detection and
demodulation problem to a fixed-frequency spectrum in
which it is most convenient to implement the detector and
demodulator.  Similarly, the AHF system mixes an IF signal
with the input signal to translate the filtering problem to a
fixed frequency where it is convenient to do the filtering
operation.  However, in the case of the super-heterodyne
radio, the incoming signal is at a fixed frequency whereas in
the case of the AHF the interference is time varying in
frequency.  Thus in order to maintain a fixed frequency for
the filter, we must constantly adjust the IF frequency in order
to translate the input interference to the fixed filter that is
used to attenuate the interference [10].
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Figure 1.  Heterodyne Filter Block Diagram.

2.2 AHF Block Diagrams

Figure 1 shows the block diagram for the Adaptive
Heterodyne Filter (AHF) [10].  The input signal is multiplied



by the intermediate frequency (IF) function c(n) in the upper
branch and by the IF function s(n) in the lower branch thus
translating the input signal to the intermediate frequency (IF)
where a fixed filter removes the interference.  The frequency
φi of the IF signal is adapted as a function of   i  in such a way
as to bring the narrow-band interference frequency to the
frequency of the fixed filter.  At the output of the fixed filter,
IF functions c(n) and s(n) are used to translate the signal back
to the original frequency band (baseband) in such away that
we generate two signals p(n) and q(n) which are used in the
standard LMS adaptive algorithm.  Figure 2 shows the LMS
adjustment scheme used to adjust the frequency φi  of the IF
signals c(n) and s(n).   The output p(n) from the circuit of
Figure 1 is the filtered signal output which forms the error
function ε for the LMS algorithm of Figure 2 and the output
q(n) from the circuit of Figure 1 forms dε / dφ , the derivative
of the Heterodyne Filter Output ( p(n) = ε ) with respect to the
adaptive parameter φ  which is used in the LMS algorithm of
Figure 2  [5, 6, 10].
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Figure 2.  Adaptive LMS Algorithm Adapts IF frequency φi

After passing through the Heterodyne Filter Block, the two
signals pass through two identical selection filters that
determine the area of sensitivity [9, 10].  The selection filters
are made of 3 Gray-Markel lattice band-pass filters in series
[11].  These selection filters limit the adaptation range for the
notch filter so that the notch will not wander into an area of
critical control signals.  The selection filter also limits the
range over which the IF frequency must be adjusted.  The in-
phase signal is the error of the system.  The out-phase is the
derivative of that error with respect to φ.  These are multiplied
together with µ  to form the derivative of φ with respect to
time, (based on the a LMS algorithm) which is then integrated
to form φ which is the change in phase per sample for the
heterodyne.

2.3 Derivation of the Filter Response

First let us take a look at the Heterodyne Filter Block of
Figure 1.  Assuming for the moment that φ constant, we may
write the expression for u1 and u2 in the frequency domain as:

U1 (e jω) = X(e jω)*S(e jω) = 1/2j [X(e j(ω-φ)) - X(e j(ω+φ))]   (1)

U2 (e jω) = X(e jω)*C(e jω) = 1/2 [X(e j(ω-φ)) + X(e j(ω+φ))]   (2)

We see that the signal  X(ω)  has been translated up to the
new IF frequency  f  where the fixed filter may operate on it.
We may then translate this back to the baseband.  Making use
of equations (1) and (2) we find v1 and v2 in the frequency
domain:

V1(e jω) = U1(e jω)Hf(e jω)

= 1/2j Hf(e jω) [X(e j(ω-φ)) - X(e j(ω+φ))]                (3)

V2(e jω) = U2(e jω)Hf(e jω)

= 1/2 Hf(e jω) [X(e j(ω-φ)) + X(e j(ω+φ))]                (4)

We may then find the output signal p(n) in the frequency
domain as follows:

W1(e jω) = V1(e jω)*S(e jω)

= -1/4 [Hf(e j(ω−φ)) (X(e j(ω−2φ)) - X(e jω))]

        +1/4[Hf(e j(ω+φ))(X(e jω) - X(e j(ω+2φ))]              (5)

W2(e jω) = V2(e jω)*C(e jω)

= 1/4 [Hf(e j(ω−φ)) (X(e j(ω−2φ)) + X(e jω))]

   +1/4[Hf(e j(ω+φ))(X(e jω) + X(e j(ω+2φ))]             (6)

adding the terms we form:

P(e jω) = ½ [Hf(e j(ω−φ)) + Hf(e j(ω+φ))]X(e jω)            (7)

so the system transfer function is

P(e jω)/X(e jω) = Hsystem(e jω)

= ½ ( Hf(e j(ω−φ)) + Hf(e j(ω+φ)))        (8)

This is a most remarkable result as it says that there will be no
aliases created by the heterodyne in this filter arrangement.
Both filters are of identical shape and the same order.  They
are centered about π/2−φ and π/2+φ  (if the original was
around π/2).  If there is no signal of interest above π/2 the
result is that we have moved the filter purely by heterodyne.
No heterodyne-aliasing filters are required and no delay is
introduced as was the case in previous AHF filters [10].

2.4 Derivation of LMS Gradient

Assuming that are gradient is dependent on H(e jω), we will
need its derivative with respect to the IF frequency φ.  For this
we will start with H(e jω) and transform it back to time space,
then take a derivative, and then manipulate it back to



frequency space so we can generate this from other terms
available in the filter.

H(e jω) = ½ [Hf(e j(ω−φ)) + Hf(e j(ω+φ))]                         (9)

In the time domain, we must express h(n) as a sequence of
changing  frequencies  φi  since  φ  is not a constant:

h(n) = cos{Σn
i=0φi` hf(n)                                         (10)

take derivative of equation (10) term by term:

δh(n)/δφ = -sin{ Σn
i=0φi` hf(n)                                 (11)

Now make the typical assumption that is made in most LMS
algorithms that we can estimate the actual derivative by the
current sample:

h(n) = -sin(φn) hf(n)                                               (12)

δh(n)/δφ = 1/(2j)  [-e +jnφ hf(n) + e -jnφ hf(n) ]           (13)

Now going back to the frequency domain:

δH(e jω)/δφ  = -1/(2j) [ Hf(e j(ω−φ)) - Hf(e j(ω+φ)) ]        (14)

From Figure 1 we see that equation (14) can be obtained from
the terms w3 and w4 :

W3(e jω) = V1(e jω)*C(e jω)

=1/(4j) [Hf(e j(ω−φ)) (X(e j(ω−2φ)) - X(e jω))]

  +1/(4j)[Hf(e j(ω+φ))(X(e jω) - X(e j(ω+2φ))]         (15)

W4(e jω) = V2(e jω)*S(e jω)

= 1/(4j) [Hf(e j(ω−φ)) (X(e j(ω−2φ)) + X(e jω))]

    -1/(4j)[Hf(e j(ω+φ))(X(e jω) + X(e j(ω+2φ))]       (16)

Taking the difference of equation (15) and (16) yields the
desired derivative of equation (14)  Hence q(n) in the diagram
of Figure 1 is the derivative needed for the LMS algorithm to
adjust the IF frequency.

3. EXPERIMENTAL RESULTS

3.1 Experimental Setup

The Adaptive Heterodyne Filter (AHF) was applied to the
problem of detecting and attenuating a narrow-band signal
caused by a mechanical resonance in a flight control system

designed for Rockwell Division of Boeing North America
[9].  The mechanical resonance frequency varies slowly with
time due to temperature changes and ranges in frequency
between 100 Hz and 115 Hz.  The control signals are all
located below 100 Hz.  The sampling rate of the system is
fixed by other considerations at 6 kHz.  Therefore our fixed
Filter of Figure 1 is chosen to be the bandpass filter at π/2 or
1.5 kHz as shown in Figure 3.  The notch is achieved by
subtracting the resulting bandpass filter from one.
Technically it is slightly more complex than this because the
output p(n) in Figure 1 is characterized by the sum of two
bandpass filters as seen in equation (9).  In general, each of
the passbands of these bandpass filters is corrupted slightly
by the tail of the other bandpass filter requiring a correction
factor in order to produce the desired notch filter.   However,
by choosing the bandpass filter as shown in Figure 3, the
correction factor happens to turn out to be achieved by
subtraction it from the input as shown in Figure 3.  Details of
this will be presented in a future paper.  It is also possible to
replace the bandpass filter with a notch filter and achieve the
same results, but once again a correction factor is needed
which can be implemented the same way.
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Figure 3.  AHF for Experimental Results

3.2 Attenuation of a Stationary Sine in Noise

The first experiment was designed to demonstrate that the
AHF can detect and attenuate a fixed sine wave without
attenuating the desired control signals.  The selection band
was set from 100 Hz to 115 Hz and the filter setup of Figure
3 was used.  Figures 4 shows the simulation results for an
interfering sine wave at 107 Hz (amplitude 1.0) in noise
(mean 0.5 uniformly distributed) with control signals at 20
DC (amplitude 0.5) and at 200 Hz (amplitude 1.0). The fixed
filter is at 1.5 kHz as shown in Figure 3 and the adaptive
circuit successfully adjusted the IF frequency to attenuate the
sine wave.  We can see in Figure 4 that the filter output
(dotted line) has provided a 40db attenuation of the
mechanical resonance dropping it to the noise floor.  The



bandpass filter uses α = 0.99 and the optimum LMS step size
was µ = 0.00004.  Convergence occurred within 3000
samples.

Figure 4.  Attenuation of a Stationary Sine in Noise

Figure 5.  Attenuation of a Time Varying Sine in Noise

3.3   Attenuation of Time Varying Sine in Noise

The second experiment was designed to demonstrate that the
AHF can detect and attenuate a time varying sine wave
without attenuating the desired control signals.  Once again
we chose the selection band to be from 100 Hz to 115 Hz and
the filter setup of Figure 3 was used.  Figures 5 shows the
simulation results for a time varying interfering sine wave (fm
modulated with amplitude 1.0, center frequency 107.5 Hz and
deviation 4.5 Hz) in noise (mean 0.5 uniformly distributed)
with control signals represented more realistically by a
Gausian distributed  signal at 18 Hz with noise as before. The
fixed filter is at 1.5 kHz as shown in Figure 3 and the
adaptive circuit successfully adjusted the IF frequency to
attenuate the time varying sine wave.  We can see in Figure 5
that the filter output (dotted line) has provided a 45db
attenuation of the mechanical resonance dropping it to the
noise floor. The bandpass filter uses α = 0.95 and the

optimum LMS step size was µ = 0.0006.  Convergence
occurred within 3000 samples.

4. SUMMARY
Using the AHF of Figure 1 with the LMS adaptive algorithm
of Figure 2, we are able to accomplish adaptive heterodyne
filtering without the need for anti-ailiasing filters.  This is a
major improvement over previous AHF designs.
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