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ABSTRACT

This paper describes extensions and improvements to IBM’s
large vocabulary continuous speech recognition (LVCSR)
system for transcription of broadcast news. The recognizer
uses an additional 35 hours of training data over the one
used in the 1996 Hub4 evaluation [7]. It includes a number
of new features: optimal feature space for acoustic modeling
(in training and/or testing), filler-word modeling, Bayesian
Information Criterion (BIC) based segment clustering, an
improved implementation of iterative MLLR and 4-gram lan-
guage models. Results using the 1996 DARPA Hub4 evalu-

ation data set are presented.

1. INTRODUCTION

Recently interest in large vocabulary continuous speech
recognition recognition (LVCSR) research has shifted from
read speech data to speech data found in the real world - like
broadcast news (BN) over radio and TV and conversational
speech over the telephone. Considerable amount of both
acoustic (approximately 100 hours of which about 70% is us-
able) and linguistic (approximately 400 million words) train-
ing data for BN has been made by the Linguistic Data Con-
sortium (LDC) in the context of DARPA sponsored Hub4
evaluations of LVCSR systems on BN [1]. As has been stud-
ied and reported by several researchers [4, 7, 11, 10, 8, 9],
BN transcription poses several challenges to LVCSR systems.
The speech data exhibits a wide variety of speaking styles,
environmental and background noise conditions and channel
conditions. The general approach has been to classify the
BN data into a set of homogeneous conditions and to build
acoustic models (AMs) for each condition. Test data is then
segmented and classified along conditions and an appropriate
acoustic model used for each condition. One particular clas-
sification scheme for BN news data that has been used in the
DARPA sponsored Hub4 BN evaluation in 1996 splits the
speech data along the so-called F-conditions [1]: prepared
speech (F0), spontaneous speech (F1), low fidelity speech,
including telephone channel speech (F2), speech in the pres-
ence of background music (F3), speech in the presence of
background noise (F4), speech from non-native speakers (F5)
and FX - all other speech. The 1996 Hub4 Unpartitioned
Evaluation (UE) and Partitioned Evaluation (PE) test data
set forms a standard test set for evaluating LVCSR systems.
The only difference between the UE and PE tests is that
in the latter, the data is segmented and classified into F-

conditions manually, while in the former this has to be done
automatically if necessary. A comparison gives information
on how well automatic segmentation schemes work for BN
news transcription.

For the UE test, in the past we have used a two-stage
approach [4]. The speech data is first segmented into
high bandwidth speech (clean), low bandwidth speech (tele-
phone), and music. The music segments are removed and
the high and low bandwidth speech segments are then de-
coded using models trained (or adapted) on high and low
bandwidth speech respectively. This is because of the inad-
equacy of current segmentation algorithms to separate out
other F-conditions; it is relatively easy to detect music or
telephone channel speech.

For the PE test, in the past we have built condition specific
models for each condition using MAP and MLLR. This is
because there is not sufficient training data to independently
build models for each F-condition; besides, it may not be the
best way to handle the problem.

Our current approach for both the UE and PE tests is to
use a single robust model built on all the available training
data. Speaker/condition-adapted (SAT) training [6], while
appropriate for this purpose, is not used in the model de-
scribed in this paper. For both the PE and UE tests, it-
erative MLLR is used to adapt the baseline robust model
for both the speaker and the F-condition. For the UE test,
the data is still, however, segmented into low-bandwidth and
high-bandwidth segments. The segments are then clustered
into homogeneous groups (the same speaker or environmen-
tal condition) before iterative MLLR is applied.

In this paper we present algorithmic improvements to the
baseline model used in the UE/PE evaluations in 1997. Some
of the improvements are: use of optimal feature spaces for
modeling gaussian distributions (in a maximum likelihood
sense), filler-word modeling, use of Bayesian Information Cri-
terion for segment clustering, and an improved implementa-
tion of iterative MLLR. The focus of the research effort has
been on improving baseline recognition accuracy for clean
speech (i.e., the FO and F1 conditions).

2. OVERVIEW OF THE LVCSR SYSTEM

The IBM LVCSR system uses acoustic models for sub-
phonetic units with context-dependent tying [2, 3] for de-
tails). The instances of context dependent sub-phone classes
are identified by growing a decision tree from the available
training data [2] and specifying the terminal nodes of the tree



Acoustic Model FoO F1
AM-base 21.4 | 30.3
AM-0(4.0K) 213 | 20.7
AM-1(2.0K) 22.6 | 31.0
AM-2(35K) 211 | 20.1
AM-3(7.3K) 21.9 | 30.3

Table 1. Comparison of Decision Tree Sizes: AM-
base - trained on WSJ, AM-0 - trained on BN with
4K leaves, AM-1 trained on F0+4+F1 portion with 2K
leaves, AM-2 same as AM-1 with 3.5K leaves, AM-3
same as AM-2 with 7.3K leaves.

as the relevant instances of these classes. The acoustic fea-
ture vectors that characterize the training data at the leaves
are modeled by a mixture of Gaussian pdf’s, with diagonal
covariance matrices. The HMM used to model each leaf is a
simple 1-state model, with a self-loop and a forward transi-
tion.

The recognizer used in the 1996 evaluation had 5.7K HMM
states (or leaves) and 170K gaussians. The decision tree for
the HMM states was built WSJ0+1 data. The gaussian mix-
tures, however were trained on the approximately 35 hours
of BN training data distributed by LDC in 1996. For the PE
test, the models were further adapted to each focus condition
and for the UE test to high/low bandwidth speech using a
combination of MAP and MLLR [15, 14, 7] adaptation.

3. ACOUSTIC MODELING

A new baseline acoustic model (AM-base) with 90K gaus-
sians was built using all the 70 hours of training data (in-
cluding the 35 hours of additional data distributed in 1997)
by rebuilding gaussian mixtures for the 5741 HMM states.
Since these states were constructed from WSJ data we built
two new decision trees for context clustering, one based on
just the clean (F0+F1) training data and the other based
on all the training data. Gaussian mixtures were then es-
timated using the EM algorithm and the performance for
various model sizes were evaluated. Experimental results for
the FO and F1 focus conditions on the PE test are shown
in Table 1. The language model (LM) used in these ex-
periments is LM-base (see below) and there are about 90K
gaussians in each of the acoustic models. Firstly, notice that
building the decision tree with the BN data improves error
rate on both F0 and F1 (WER with AM-base is worse than
WER with AM-0 or AM-2). The improvements are more on
F1 (spontaneous speech) because of the new realizations of
context-dependent sub-phonetic units vis a vis WSJ train-
ing data. Secondly, not using the training data for the other
F-conditions in tree building gives more gain (AM-0 vs. AM-
2). This is probably because some of the HMM states are
now modeling realizations of phones in specific environmen-
tal conditions. The best results were obtained with a system

with about 3.5K HMM states (AM-2).

3.1. Filler Models

The training data is transcribed with breath and filled-pauses
allowing us to build models for filler words. Filler words are
transcribed using our usual phone set of 51 phones in the dic-
tionary. To the decision trees that take sub-phonetic units

Acoustic Model FoO F1
AM-base 21.4 | 30.3
AM-4 21.0 | 29.0
AM-2 21.1 | 29.1
AM-5 21.0 | 28.9

Table 2. % word error rate with filler word models:
AM-base and AM-2 do not use filler models. AM-
4 is AM-base with filler models and AM-5 is AM-2
with filler models.

to the HMM states, new states were added for each occur-
rence of a phone within a particular filler word. The models
for these states were initialized by those of some other state
of the same sub-phonetic unit. Standard Baum-Welch rees-
timation is then used to estimate the models. Filler mod-
els seem to improve the performance on spontaneous speech
without degrading the performance on prepared speech when
the base models was AM-base. However, the gain is mar-
ginal when the base models used is AM-2. This is presum-
ably because AM-base HMM states were built on WSJ data
while AM-2 HMM states were built on the BN training data
and hence some states were already modeling filler words.
Results are summarized in Table 2.

3.2. Optimal Features Spaces for Modeling

The number of gaussians used in current LVCSR systems
implies (from data insufficiency, storage and computational
considerations) that only diagonal gaussian models can be
used. With full-covariance gaussian models linear transfor-
mations of the feature space clearly does not lead to a bet-
ter model. In fact, if the transformation is unimodular (or
volume-preserving) the likelihood is exactly the same in all
transformed spaces. However, with diagonal gaussian mod-
els one can ask among all possible transformed feature spaces
which is the one where the diagonal assumption is “most
valid”. If the transformation is unimodular (required only
to simplify the argument), then, in each transformed space
there is a loss in likelihood with respect to full-covariance
modeling (which is a constant). One can therefore find a
transformed space in which the loss in likelihood is least
(for details see [12]). This gives a single global transfor-
mation on the feature space. Notice however, the gaussians
can be clustered into groups and each group can be mod-
eled in its own feature space. Since there is more flexibility
in this case the loss in likelihood is less. In the extreme
case where each gaussian has its own feature space trans-
formation one can choose the transformation to be projec-
tion onto the eigenbasis of its covariance matrix and the
likelihood of the data i1s the same as full-covariance likeli-
hood. However, from computational and storage points of
view this is exactly as expensive as full-covariance model-
ing. If (z;,1;) is the labeled (at HMM state level) train-
ing data, 1 € {1,2,...,N},e; € R%,1; € {1,2,...,J}, and
c; € {1,2,..., K} is the class cluster (or transformation id)
map, and X; is the covariance at state j (we are assuming a
single gaussian at each state for simplicity), then the likeli-



Acoustic Model FoO F1
AM-2(baseline) 21.1 | 29.1
AM-6(1 transform) 19.3 | 28.4
AM-7(4 transforms) | 19.4 | 29.0

Table 3. Optimal Feature Spaces for HMM state
clusters: a) AM-2 - baseline b) AM-6 - single trans-
form c¢) AM-7 - 4 transforms

Acoustic Model FoO F1
AM-6 19.3 | 28.4
AM-8 19.3 | 27.9

Table 4. Supervised adaptation on FO0+F1 using
MLLR (% WER): AM-6 - baseline, AM-8 - adapted
models.

hood of the training data is given by [12]:
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Maximizing the above expression numerically gives the op-
timal choice of transforms Az, & € {1,2,...,K}. In our
experiments, after the transform is obtained this way, using
single-pass-retraining from a baseline system, gaussian mix-
ture models are built for each HMM state using the new
(state-dependent) feature space. Here we present results
when using one (AM-6) and four transformations (AM-T)
on the AM-2 baseline acoustic models (see Table 3). For the
latter case one transform each was used for all the gaussians
corresponding to a) stop-consonants and flaps, b) fricatives,
c) vowels and dipthongs, and d) nasals, glides, and silence re-
spectively. This notion of optimal-feature spaces is the same
as the notion semi-tied full-variances [17].

3.3.

All of the acoustic models above were built on training data
from all the F-conditions. Since we are especially interested
in the performance of our LVCSR, system on F0 and F1 the
model AM-5 was further adapted using the F0 and F1 por-
tion of the training data (about 60%). The performance of
the baseline model (AM-6) and the adapted model (AM-8)

are shown in Table 4.

Supervised adaptation F0 and F1

4. SEGMENTATION AND CLUSTERING
4.1.

Gaussian mixture models for low bandwidth speech, high
bandwidth speech and pure music are used to segment the
data [4]. Besides, the test data is decoded with a a small
vocabulary (5K words) and a small acoustic model set to
obtain silence segments. This information is used to prevent
segment boundaries from splitting words. The UE and PE
test data is identical (except for the side-information of the
F-conditions in PE). Therefore a comparison of UE and PE
performance gives and evaluation of the segmentation pro-
cedure. Experimental tests were conducted on the acoustic
model AM-6 described earlier and the results are shown in

Segmentation

Ac. Model FoO F1
AM-6-+true cluster 17.5 | 24.8
AM-6-+auto cluster | 17.5 | 24.6

Table 6.
mance

Manual vs Automatic Clustering Perfor-

Table 5 The segmentation procedure leads to a loss of about
1% in accuracy across all conditions.

4.2. Unsupervised Adaptation on Test Data

Adaptation schemes like MLLR [14] adapt the means and
variances of the gaussian models using linear transforma-
tions. If there are too many adaptation parameters or too
little adaptation data, then, the adaptation tends to learn
the adaptation data transcriptions quickly. To alleviate this
problem we can decrease the number of adaptation parame-
ters or increase the amount of adaptation data. The former
is accomplished in the context of an iterative MLLR scheme
where there are 2° + 1 transforms at the i*" iteration for
2% non-silence phonetic sub-units and one transformation all
the phonetic sub-units of silence. The transformations are
applied only to the means; the variances are just scaled to
maximize the likelihood on the test data ([16]). Increase in
the amount of adaptation data is accomplished by clustering
together similar the segments using a Bayesian Information

Criterion (BIC) [13].
4.3.

The segments are clustered using a standard maximum-
linkage bottom-up-clustering procedure with a single gauss-
1an model for each segment and log-likelihood ratio distance
measure. The termination for this bottom-up-clustering pro-
cedure was determined to maximize the BIC criterion [13].
BIC is a likelihood criterion penalized by the model complex-
ity (the number of parameters in the model). At each stage
in the bottom-up-clustering process the increase in BIC value
is computed and the process is terminated when this increase
is negative. It can be easily be shown that the increase in
BIC value by merging two clusters is given by

Clustering for Unsupervised Adaptation

d(d+1
—nlog |Z| 4 ni1 log |E1] + n2 log |22 + N(d + %),

where n = n1 4+ n2 1s sample size of the merged node, ¥
is the covariance matrix of the merged node and N is the
total number of samples from all the segments. This gives,
in principle, a threshold-free approach to clustering.

To study the effectiveness of clustering, the F0 and F1
segments of PE test were clustered by hand (28 clusters) and
by using the algorithm described above (31 clusters). The
word error rate (WER) after iterative MLLR adaptation is
nearly the same as seen in Table 6. In contrast the result
of clustering all the PE segments automatically (79 clusters)
is shown in Table 7 with single and multiple iterations of
MLLR. For comparison the baseline numbers are also given.

5. LANGUAGE MODELING

The Language Model has a vocabulary of 65K most frequent
words from the BN language model corpus distributed by
LDC in 1996. The baseline language model (LM-base) is the



Test | Total | FO F1 F2 F3 F4 F5 FX
PE 28.2 | 18.6 | 25.1 | 34.8 | 24.7 | 34.8 | 20.1 | 54.2
UE 29.5 | 19.4 | 26.0 | 39.0 | 27.2 | 36.2 | 24.1 | 55.2

Table 5. Segmentation Accuracy: PE vs. UE (% WER).

Ac.Model Total | FO F1 F2 F3 F4 F5 FX
AM-6-+auto cluster 29.8 18.8 | 27.0 | 39.1 | 29.9 | 36.3 | 30.1 | 54.2
AM-6-+auto cluster +MLLR 27.8 179 | 256.8 | 33.1 | 26.6 | 35.2 | 27.8 | 49.9
AM-6-+auto cluster + iterative MLLR 27.0 173 |1 24.9 | 325 | 26.5 | 35.7 | 26.1 | 47.5

Table 7. Clustering for Unsupervised Adaptation (% WER): AM-6-auto - baseline with clustering, AM-6-
auto cluster +MLLR1 - additionally one iteration of MLLR, M-6-auto cluster +iterative MLLR - iterative

MLLR.
Lang. Model Fo F1
LM-base 21.0 | 291
LM-base+4g 20.8 | 28.7
LM-base+4g+ac | 20.7 | 28.6

Table 8. Mixture LM with 4-gram and acoustic tran-
scriptions

one used in the 1996 evaluation [4]. With the same training
data a standard 4-gram deleted interpolation LM was built
(LM-4g). This component was added to LM-base to create
LM-base+4g. This LM was further mixed with a small LM
built from the 70 hours of acoustic training data transcrip-
tions (LM-base+4g+ac). Mixing the 4-gram LM and the
acoustic transcriptions LM to the baseline LM gives minor
improvements to the recognition performance as seen in Ta-
ble 8. The acoustic model used in these experiments was

AM-6.

6. CONCLUSION

Transcription of broadcast news poses several challenges.
This paper presented improvements and extensions of the
IBM LVCSR system used in the 1996 DARPA Hub4 evalua-
tion. Optimal feature spaces for modeling is shown to lead to
significant improvements in the baseline accuracy. However,
further improvements are required, especially, in robustness
to channel and noise degradations.
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