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ABSTRACT
  Most FIR filter realizations use the inputs and coefficients
directly to compute the convolution. In this paper, we present a
low power and high speed FIR filter designs by using first order
difference between inputs and various orders of differences
between coefficients. This design first reformulates the FIR
operations with the differences in algorithm level. Then, in
architecture level, we adopt the DA architecture to exploit the
probability distribution such that power consumption can be
reduced further. The design is applied to an example FIR filter to
quantify the energy savings and speedup. It shows lower power
consumption than the previous design with the comparable
performance.

I. INTRODUCTION

  Recently, due to the popularity of the portable battery-powerd
wireless communication systems such as cellular phones, pagers
and wireless modems, high performance and low power digital
signal processing (DSP) has become increasingly important. One
of the commonly used operations in DSP is FIR filters. A N-tap
FIR filter with coefficients Ck, input sequence Xj, and output
sequence Yj can be expressed as
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  Conventional realizations of FIR filters use input and
coefficients directly, which requires full wordlength of the
multiplication and accumulation and thus consumes more power.
Realization using differential coefficients (called differential
coefficients method (DCM)) has been proposed in [1] to solve
above problems. However, their formulation reconstructs original
CkXj-k term by term, which requires many memory accesses.
Besides, their formulation only considers coefficients difference.
They did not consider the architecture level design to maximize
the power saving.

  To solve above problems, in this paper, we propose a new
algorithm (called differential coefficients/input method (DCIM))
that not only consider differential coefficients but also consider
differential inputs. After the algorithm reformulation, we propose
an architecture design by using distributed arithmetic (DA) that
can group high transition probability LSB input bits at one time
so we can skip low transition probability MSB bits more
efficiently and save power consumption.

  This paper is organized as follows. In Section 2, we first
review the DCM algorithm and then we propose our new
algorithm formulation. Then in Section 3 we present the DA
architecture design based on the DCIM algorithm. In Section 4,
we will analyze the power consumption and delay of the

proposed design and apply them to an example filter. Finally, we
conclude this paper in Section 5.

II. ALGORITHM FORMULATION

  The differential coefficients method (DCM) computes the
partial product with mth-order differences first, and then added
the stored previous partial product back. If the mth- order
differences are defined as
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²  , k=m to (N-1): m=2 to (N-1).

Then the recurrence relation between coefficients using mth-
order differences is
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Then, for any two consecutive outputs Yj and Yj+1, we can rewrite
the outputs with first order difference DCM algorithm and obtain

Yj=C0Xj+C1Xj-1+…+CN-1Xj-N+1

Yj+1=C0Xj+1+C1Xj+…+CN-1Xj-N+2

   = C0Xj+1+{(C1Xj- C0Xj)+C0Xj}+…+{(C N-1Xj-N+2-CN-2Xj-N+2)+
CN-2Xj-N+2}

   =C0Xj+1+{(C1- C0) Xj + C0Xj}+…+{(C N-1-CN-2)Xj-N+2+CN-2Xj-

N+2}

The DCM algorithm computes {(C1- C0) Xj + C0Xj}, … , {(CN-1-
CN-1) Xj-N+2+ CN-1Xj-N+1}, term by term. During the computation
of each term, DCM first computes the partial products (Ck- Ck-1)
Xj-(k-1) and then adds Ck-1Xj-(k-1) terms back. Each Ck-1Xj-(k-1) term
that has also occurred in computing Yj was stored in a memory
and retrieved when necessary. So only the differential coefficient
is used to do the multiplication, and other terms such as Ck-1Xj-(k-

1) are not computed again and just are just added back. By this
way, the small quantity because of the difference (Ck- Ck-1) can
save the power consumption to compute the partial products (Ck-
Ck-1) Xj-(k-1) because we can trade long multiplier with a short one
and overheads. However, such computation order is not efficient
enough since the operation to add compensated terms Ck-1Xj-(k-1)

back has to be performed for each term computation, which
wastes N unnecessary memory access and addition and then
consumes memory area and power to store and retrieve them.
These compensated terms can be summed together, stored and
retrieved once per Y. Besides, the input data X still uses full
word length.

  Differential input can be introduced to reduce the word length,
and thus save power. If the range of the difference between two
successive inputs is Wdx bits smaller than original input, we may
use even shorter multipliers. Such case may occur in speech



systems such as wireless phone system. In such system design,
the filter input is often obtained from an analog-to-digital
converter (ADC). The analog input (speech signal) is continuous
and has only small sharp amplitude change. So the filter input
data will be quite close to the neighbor input and their difference
will be a small value, which is quite suitable for such differential
input design.

  The proposed method, which we term the differential
coefficient/input method (DCIM) can be formulated as follows.
For any consecutive outputs Yj-1 , Yj and Yj+1, we obtain

Yj-1=C0Xj-1+C1Xj-2+…+CN-1Xj-N

Yj=C0Xj+C1Xj-1+…+CN-1Xj-N+1

Yj+1=C0Xj+1+C1Xj+…+CN-1Xj-N+2

Let

Ú
ë

²= Yj- Yj-1= C0(Xj- Xj-1)+C1(Xj-1- Xj-2)+…+CN-1(Xj-N+1- Xj-N)
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² = Yj+1- Yj= C0(Xj+1- Xj)+C1(Xj- Xj-1)+…+CN-1(Xj-N+2- Xj-N+1)

and define the sum of the first (N-1) partial products of Yj as

Yj,p= C0(Xj- Xj-1)+C1(Xj-1- Xj-2)+… +CN-2(Xj-N+2- Xj-N+1)

Then, reformulate Ú ë

²  and Ú ë +²
²  with DCM, we can express Ú
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² as

Ú ë +²
² = C0(Xj+1- Xj)+ {(C1- C0) (Xj- Xj-1) + C0(Xj- Xj-1)}+…

     +{(CN-1- CN-2)(Xj-N+2- Xj-N+1)+ CN-2(Xj-N+2- Xj-N+1)}
   = C0(Xj+1- Xj)+ (C1- C0) (Xj- Xj-1)+….+ (CN-1- CN-2)
     (Xj-N+2- Xj-N+1)+
    {C0(Xj- Xj-1)+C1(Xj-1- Xj-2)+…+CN-2(Xj-N+2- Xj-N+1)}
   = C0(Xj+1- Xj)+ (C1- C0) (Xj- Xj-1)+….+ (CN-1- CN-2)
     (Xj-N+2- Xj-N+1)+ Yj,p

So,

Yj+1=Ú
ë +²
² + Yj

   = C0(Xj+1- Xj)+ (C1- C0) (Xj- Xj-1)+….+ (CN-1- CN-2)

     (Xj-N+2- Xj-N+1)+ Yj,p+ Yj

The first N partial products are multiplications between
differential coefficients and differential inputs, except the first
term that has only one differential operand. Thus, a shorter
multiplier than that in DCM can be used. Besides, we stored the
summed value of the compensated term C0(Xj- Xj-1), …, instead
of the individual compensated terms, which will save (N-2)
unnecessary memory accesses and additions. The compensated
values Yj,p and Yj can be easily obtained from the previous
computation Yj and stored for the use of this computation Yj+1.
Thus, for each output Y, we need only two extra storage (Yj,p and
Yj) and two extra additions.

  In this DCIM formulation, we only use first order difference of
input. That is because higher order difference of input will have
larger range than the range of first order difference due to the
continuous property of analog input. However, the higher order
difference of coefficients can be easily derived as that in [1]. So
we will use the definition of m-th order difference of coefficients
in this paper.

III. ARCHITECTURE DESIGN

  Fig. 1 shows the architecture design with the DA technique.
DA, since its introduction by Pele and Liu[2], has been regarded
an efficient bit-serial computational operation to do the filter

operations in a single direct step. Without loss of generality, if
we express the differential input Xj as bit-level representations in
unsigned fraction
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we can reformulate the FIR operations as
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The terms inside the bracket are precomputed and stored in a
memory since all coefficients are constant. The input data is used
to address the memory and the result is accumulated to obtain the
output. Since all filter coefficients are constant, we can use ROM
to store the precomputed partial results and avoid to compute
them on line.

  As illustrated in Fig. 1 , the ROM address uses the same bit
position in all input data. So we can group the high transition
probability LSB of all inputs at the same time and separate them
with other low transition probability MSB bits. Since MSB bits
are often zero, we may skip the memory access and accumulation
operation and thus save power. Besides, the ROM realization in
DA also offers the low power possibility since the high power
multiplication is replaced by just table look up and accumulation.
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Fig. 1 Architecture design with the DA technique.

  Combining with the previous DCIM algorithm, we can obtain
the architecture as shown in Fig. 1. First, we subtract the
previous input from the current input to obtain the differential
input. Then the word-serial bit-parallel input is converted to
word-parallel bit-serial output to access the ROM. The ROM
table stores the DA result of Yj,p (multiplication result of
differential input and differential coefficients). The ROM table
result is accumulated by the shift-adders. The compensated value
is separated stored in a memory and added back to the output at
the final accumulation cycles. The ROM table can be halved by
offset binary coding[2] or partitioned into several parts. Readers
who interested in these methods can refer the paper by White[2].

IV. COMPUTATIONAL ANALYSIS

  The average net computational energy per Y, denoted by ENET,
is the sum of multiplication cost (EMULT), data and coefficients
storage access cost (EMEM), product terms accumulation costs
(EACC), overhead storage accesses costs(E’

MEM), and overhead
additions costs (E’ADD). So
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We have considered both designs with or without DA
architecture. For ease of comparison, let the average energy
dissipated in a single bit full addition or subtraction be denoted
by Eadd. Let the average energy dissipated per bit in a single bit
arithmetic shift of a field be denoted by Eshift. Let the magnitude
of the m-th order difference between coefficients be Ø

å

î  bits

smaller than the original coefficients. For DCM, according to [1],
we have the followings

{Emult} DCM=N((Wx+1)(Wc-Øå

î -1)/2*Eadd+(Wx+Wc-Øå

î )(Wc-

Ø
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î -1) *Eshift)

{EMEM} DCM=N(Wx + Wc-Øå

î )Emem

{EACC} DCM=(N-1)( Wc+ Wx + íðè
³
Ï )Eadd

{E’
MEM } DCM=2mN(Wc+Wx) Emem

{E’
ADD} DCM=mN(Wc+Wx) Eadd

As shown in the formula, the overhead of DCM {E’
MEM } DCM and

{E’
ADD} DCM is proportional to order of difference and tap

numbers, which will quickly offset the energy savings by the
differential coefficients.

  Similar formula can be obtained for DCIM without DA
architecture since both DCM and DCIM without DA use shift
and add operation for multiplications.

{Emult} DCIM=N((Wx-Wdx+1)(Wc-Øå

î -1)/2*Eadd+(Wx-Wdx+Wc-

Ø
å

î )(Wc-Øå

î -1) *Eshift)

{EMEM} DCIM=N(Wx -Wdx + Wc-Øå

î )Emem

{EACC} DCIM=(N-1)( Wc+ Wx-Wdx + íðè
³
Ï )Eadd

{E’
MEM} DCIM=2m(Wc+Wx+  íðè

³
Ï )Emem+2(Wc+Wx+  íðè

³
Ï )

Emem+2WxEmem

{E’
ADD} DCIM=m(Wc+Wx+  íðè

³
Ï )Eadd+(Wc+Wx+  íðè

³
Ï )

Eadd+WxEadd

  For DCIM with DA architecture, the multiplication cost will
be the cost of memory table look up. So

{Emult} DCIM,DA=(Wx-Wdx)(Wc-Øå

î + Wx-Wdx + íðè
³
Ï )EMEM

As to the data and coefficient storage cost, since the DA
architecture has distributed the coefficients in the ROM, only the
differential input data access cost has to be counted.

{EMEM} DCIM,DA=N(Wx-Wdx)Emem

The product term accumulation power is the power consumed by
the shift-adder in the architecture.

{EACC} DCIM,DA=(Wx-Wdx)(Wc-Øå

î +Wx-Wdx+  íðè
³
Ï )(Eadd+

Eshift)

The overhead required by DCIM is the compensated Yj and
{Y j,p,n:n=1:m} and increases as the order of differences between
coefficients used increases. The overhead for m-th order
difference between coefficients is (m+1) storage and (m+1) extra
additions. The overhead cost (read and write) is

{E’
MEM} DCIM,DA=2m(Wc+Wx+  íðè

³
Ï )Emem+2(Wc+Wx+
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Ï ) Emem+2WxEmem

{E’
ADD} DCIM,DA=m(Wc+Wx+  íðè

³
Ï )Eadd+(Wc+Wx+  íðè
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Eadd+WxEadd

  So the average net energy savings, denoted by SNET, is

SNET1=({ENET} DCM-{ENET} DCIM)/ {ENET} DCM

  The storage models used in this paper are the same as that in
[1]. For square root model, {EMEM}=K 1 ü þÔ

ÎÆÎ
. For logarithm

model, {EMEM}=K 2log2{SMEM}. For linear model,
{EMEM}=K 3{SMEM}. The memory sizes {SMEM} for the two
methods are

{SMEM} DCM=N[(m+1)(Wc+Wx)- Øå

î ]

{SMEM} DCIM=N(Wc-Øå

î +Wx-Wdx)+2m(Wc+Wx+  íðè
³
Ï )

+2(Wc+Wx+  íðè
³
Ï ) +2Wx

{SMEM} DCIM,DA=N(Wx-Wdx)+3*(Wc+Wx+  íðè
³
Ï )+(Wc-Øå

î +

Wx-Wdx + íðè
³
Ï )2N

For large N, the ROM size will be impractical large. One
solution is to partition long taps number into smaller pieces. For
fair comparison, we will use the low power library data in [1]. In
that library, Eshift=200, and Eadd=170.

  Fig. 2 and Fig. 3 shows the energy savings SNET1 for a 26-tap
Hamming windows. For fair comparison, we use the same
parameters as in [1]. The Wdx is assumed to be 2 for conservative
estimation. Ø

å

î  will be 2m for 26-tap filters. As shown in the

figures, DCIM is superior than DCM due to the savings of
unnecessary compensated value accesses. DCIM with DA has
worse performance at linear and square root memory model due
to the large memory size, but it gives large energy savings at the
logarithmic memory model. So low word length and high order
of differences design is suitable for DCIM without DA. The
delays of the DCM and DCIM without DA is comparable since
we use add and shift to replace multiplications in both designs.
Throughput of DCIM with DA will be higher than that of DCM
since we use the precomputed data and avoid computations.

V. CONCLUSION

  This paper presents low power FIR realization by using both
first order difference between input and various order differences
between coefficients. For an example filter, DCIM shows greater
energy savings than DCM due to the savings of unnecessary
compensated value operations. DCIM with DA architecture can
be applied to short filters for large energy savings. For long
filters, we can directly apply DCIM without DA to avoid the
exponential growth of DA ROM table.
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(a) Square root memory model.
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(b) Logarithmic memory model.
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(c) Linear memory model.

Fig. 2 Energy Savings as a function of the memory access
constant.
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(a) Square root memory model (K1=1.0).
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(b) Logarithmic memory model (K2=20).
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( c) Linear memory model (K3=0.005).

Fig. 3 Energy savings as a function of the order of differences
used.


