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ABSTRACT

We develop detection methods for automatic environ-
mental monitoring of disposal sites on the deep ocean
oor using chemical sensor arrays. Such sites have been
proposed for the relocation of dredge materials from
harbors and shipping channels; the monitoring is used
to detect possible release of pollutants at the site. We
model the underwater transport of the pollutants as
a di�usion process, and obtain a measurement model
by exploiting the spatial and temporal evolution of the
associated concentration distribution. The detection
problem is de�ned by a one side hypothesis test for the
case of multiple sources. We derive two detectors, the
generalized likelihood ratio (GLR) test and the mean
detector, and determine their performance in terms of
the probabilities of false alarm and detection. The re-
sults are applied to the design of chemical sensor arrays
satisfying criteria speci�ed in terms of these probabil-
ities, and to optimally select numbers of sensors and
time samples. Numerical examples are used to demon-
strate the applicability of our results.

1. INTRODUCTION

The continuous buildup of sediment in U.S. ports and
harbors has a detrimental impact upon national eco-
nomic and military security. Dredging is required to
maintain channel depths; however, the dredged mate-
rials may contain considerable quantities of contami-
nated sediment and waste materials. It has recently
been proposed to dispose of these materials by deposit-
ing them in bags on the abyssal ocean seaoor. This
proposal is called the deep ocean relocation (DOR) pro-
gram and it has been pursued by NRL and DARPA
over the last 4 years, see [1]. As a result of the presence
of contaminants in the dredged material, environmen-
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tal monitoring of pollutants near the disposal sites must
be performed. In this paper we develop procedures for
automatic monitoring of the disposal sites using chemi-
cal sensor arrays and signal processing techniques. We
derive algorithms for detecting the presence of pollu-
tants outside the sites and design sensor arrays for op-
timal detection performance. This work extends our
previous results in [2].
Although our work is developed in the context of the

DOR problem, all the results can easily be extended to
di�erent environments, such as open air.

2. PROBLEM BACKGROUND

According to the DOR plan [1] the dredged material
is enclosed in containers each with a volume of about
800yd3. A transporter disposes of 20 such units per
trip. The disposal location is a region in which the
ocean bottom is topographically at with a low kinetic
energy oor. Due to some randomness that exists in
the free fall of the bags, their points of impact with
the bottom will approximate a circular Gaussian dis-
tribution, see [3]. However, the bags' locations will be
measured after impact, and we therefore assume that
these locations are known.
A fraction of the bags may leak or rupture upon

impact with the bottom. The dispersed material will
form an apron deposit which consists of the near�eld,
where all the bags are to be deposited, and mid�eld,
which is the larger area that will receive dispersed sed-
iment. Program compliance [1] requires that concen-
tration levels of the contaminants must be insigni�cant
beyond the mid�eld area. For the remainder of the pa-
per we assume that the sensor array will be located in
the mid�eld area with diameter in the range 5-10km.
There are two basic situations that may create a

plume of dissolved materials. The �rst is bag impact,
which can be modeled as impulsive source, and the sec-
ond is water exchange between the pore waters within



the deposit and the overlaying water column, which can
be modeled as a continuous source. However, we will
not consider continuous release since its e�ects are neg-
ligible compared with that of impulsive release, over the
time interval of interest, see [1]. We will consider sev-
eral phenomena that a�ect the dispersion of released
plumes: molecular di�usion, advective and turbulent
ow.

3. TRANSPORT MODEL

The underwater transport of substances occurs as a
superposition of many scales of motion; these include
advective ow, turbulent ow and molecular di�usion.
To include the e�ects of these phenomena we consider
the following di�usion equation

@c

@t
= div(Kr � c)�r � c(v(t)): (1)

where c is the di�using substance concentration in units
of kg/m3, K is a matrix of di�usivity coe�cients in
units of m2/s, and v(t) is water velocity. In order to
solve (1) we need to reduce problem to a corresponding
problem in an isotropic medium, see [3].

Impulsive Source

An impulsive source is due to initial stirring up of pre-
viously deposited material or to instantaneous release
of substances from bags ruptured upon impact. The
resulting impact plume can be approximately modeled
as an impulsive source at time t0 of strength � in kg
units. Then, the solution of (1), detailed in [3], is

c(r; t) =
�

(4��(t� t0))3=2

� exp
�
�jr � v(t� t0)(t� t0)� r0j2

4�(t� t0)

�
;(2)

where r0 is the source location, and � is the isotropic
di�usivity, see [3].

3.1. DOR Scenario

In this part we describe the scenario of the DOR pro-
gram. We use 20 sources (bags) spatially distributed
with 2D Gaussian distribution with �s = 500m. We
will consider impact plumes that can be modeled as
impulsive sources.
It has been shown [1] that about 5% of the bag' con-

tents material will be subject to advection. Thus, to
model the release rate for each bag we use a beta dis-
tribution with parameters 1 and 19. Since each bag
contains a mixture of di�erent pollutants we assume
that the mass of a particular pollutant is 1% of the bag
contents and hence that 0.05% is the most probable

value of release rate. The density of released plumes is
set to � = 1100kg/m3. Using the above scenario the
most probable release of particular pollutant would be
approximately 336 kg.
The advective ow in the DOR scenario is due to a

mean ow of magnitude 0.5 cm/s and a tidal current
which rotates directionally with a period of 12.42 hours
and magnitude in the range 2-5 cm/s.

4. DETECTION AND PARAMETER

ESTIMATION

4.1. Measurement Model

To model the measurements, we suppose a spatially
distributed array of m selective chemical sensors lo-
cated at known positions fri, 1 � i � mg. Then, the
response of each sensor is

y(ri; tk) = c(ri; tk) + e(ri; tk); (3)

where c(ri; t) denotes the concentration of the sub-
stance (pollutant) of interest, and e(ri; t) is the mea-
surement noise. The time samples will be assumed
to be taken at uniformly spaced time points ftk =
kTs; 1 � k � pg, where Ts is the sampling interval
and p is the number of time samples.
We lump the measurement model (3) into a matrix

form
y = A(�)�+ e; (4)

where y is an (mp)-dimensional measurement vector,
A(�) is anmp�n dimensional source-to-sensor transfer
matrix, � is a vector of unknown source and medium
parameters, � = [�1; : : : ; �n]

T
is a vector of source in-

tensities, n is the number of sources, and e is a vector
of measurement noise.
For the remainder of the paper we will consider the

case of known medium characteristics, i.e., the di�usiv-
ity matrix K, velocity v(t), starting time of di�usion t0,
and source locations are all known a priori. This is a
reasonable assumption since these characteristics will
be measured according to the DOR plan [1]. Thus, we
will omit the explicit dependence of A on �.

4.2. Source Detection

The detection of pollutant leakage from the disposal
site is binary decision: H0, only the bias term and noise
are present, and H1, the source is present as well, i.e.
leakage of a pollutant occurs from some bags.

4.2.1. GLR Detector (Known Physical Model)

This detector is based on the assumption that the solu-
tion (2) approximates the physical processes reasonably



well and that uncertainties in the model are due mainly
to measurement noise.
The GLR test is given by the ratio

GLR =
sup�j�0;�2>0flikelihood(y)g
sup�j=0;�2>0flikelihood(y)g

; (5)

where the numerator (denominator) on the r.h.s. cor-
responds to the likelihood function under H1 (H0).
The ML estimates �̂ of the source intensities under

H1 are computed as follows [4]. Let

~� = [ ~�1; : : : ; ~�n]
T

= (ATA)
�1

ATy: (6)

Then,

�̂ = [�̂1; : : : ; �̂n]
T
; (7)

�̂j =

�
0 ~�j � 0

gj
TAT

l y ~�j > 0
(8)

where gj is the jth column of matrix (AlA
T
l )
�1
, and Al

is an mp� l dimensional submatrix of matrix A whose
columns correspond to positive estimates, ~�j > 0 (l is
the number of positive components in ~�).
The maximum likelihood estimates of �2 are

�̂2 =

(
1

mp (y �A�̂)T (y �A�̂) under H1;
1

mpy
Ty under H0:

(9)

Inserting the ML estimates �̂ and �̂2 into the likeli-
hood ratio (5) we get

GLR =

�
yTy

yTy � yTPAl
y

�mp

2

; (10)

where PAl
= Al(Al

TAl)
�1Al

T is the projection matrix
onto the column space of Al.

Applying the monotonic transformation mp
l (x

2

mp �
1), we rede�ne the GLR as

GLR =
mp

l

yTPAl
y

yTy � yTPAl
y
: (11)

The detection decision is then made by comparing
the GLR in (11) with a threshold � : if GLR > � reject
H0, otherwise accept H0.
The computation of � requires knowledge of the

probability distribution of GLR under H0. In this case
the GLR has a central F distribution with l and mp� l
degrees of freedom, Fl;mp�l, where l is the number of
positive components of the vector ~�. This result is gen-
eralization of the single source case in [5]. Similarly, un-
der H1 the GLR has a noncentral F distribution with

noncentrality factor � = �TATA�=�2 and the same
degrees of freedom.
Thus, the performance measures are

Pfa =

nX
l=1

clf1� Pr[Fl;mp�l(0) � � ]g; (12)

Pd =

nX
l=1

clf1� Pr[Fl;mp�l(�) � � ]g; (13)

where cl is probability that l of the source intensity
estimates are positive.

4.2.2. Mean Detector (Unknown Physical Model)

The mean detector makes less assumptions than the
GLR about the model, hence it is useful when a reliable
model is not available. This detector is computed using
the statistic, see [6]

T =

p
N

mp

1p
yT
0
y0

mpX
i=1

yi; (14)

where yi is the i-th component of the measurement vec-
tor y, the vector y0 is a measurement vector obtained
before the detection phase (in the absence of any sig-
nal), and N is the number of time samples used to
obtain y0.
Under H0, T has Student's central t distribution with

N degrees of freedom, see [7]. Note that asN increases,
the distribution of T approaches Gaussian. Under H1,
T has a non-central t distribution with N degrees of
freedom and noncentrality factor �, see [7].
The performance measures are given by

Pfa = 1� Pr[tN(0) � � ]; (15)

Pd = 1� Pr[tN(�) � � ]; (16)

� =
( 1

mp

Pmp
i=1 �i)

2

�2
; (17)

where tN (�) denotes the cumulative t distribution with
N degrees of freedom and non-centrality factor in
parentheses, � is the decision threshold, and � = A�.

5. SENSOR ARRAY DESIGN

We apply the above results on detection performance
to optimally design the array of sensors. The design is
with respect to the system parameters de�ning the ar-
ray con�guration: the array radius r, number of sensors
m, and number of time samples p.
We �rst propose a procedure for selecting the array

parameters to achieve a desired detection probability
P �
d
for a �xed Pfa. This procedure can be summarized
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Figure 1: System parameters to achieve P �
d
= 95%,

GLR detector.
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Figure 2: System parameters to achieve P �
d
= 95%,

mean detector.

as follows: set an acceptably small level of false alarm,
Pfa (e.g. 5-10%), compute the corresponding threshold
� as a function of mp, for this � , �nd combinations of
m and p that give the desired P �d using (13) and (17),
repeat the previous step for di�erent values of array
radius.
As a result, we obtain a set of possible choices for

the array parameters m, p and r that guarantees the
desired P �

d
. This set can be presented as a surface in

3D space, see Figures 2 and 3. In both examples we
used SNR = 3dB, Ts = 1000s, and r = 2500m.
Using the above procedure we design a detector that

guarantees the required Pfa and P �
d
.

An optimum selection of the number of sensors m
and the number of time samples p can be done by min-
imizing a cost function C involving the system parame-
ters, given the SNR, Pfa, and desired P �

d
. For example,

C = C1m+ C2p; (18)

where C1 is the cost per sensor and C2 is the cost per
time sample.
The optimal design is described by the following pro-

cedure: �x an array radius r, use the above algorithm
to �nd the set of candidate choices for m and p that
give the desired P �

d
, minimize C over that set, repeat

the previous steps for di�erent values of r. For any r
this procedure yields the optimal choice ofm and p and

the corresponding cost. Then, the �nal decision can be
made by selecting the largest radius with acceptable
cost.

6. SUMMARY

We have proposed detection algorithms for environ-
mental monitoring of disposal sites in the deep ocean
using chemical sensor arrays. The algorithms included
the GLR and mean detectors. The GLR detector gives
a better performance and is applicable when the phys-
ical model is reliable, while the mean detector is useful
when a precise model is not available. We have ana-
lyzed the performance of both detectors using the prob-
ability of detection Pd and false alarm Pfa. We have
also proposed algorithms for optimal array design as-
suming a variety of performance and cost requirements.
The design included selection of number of sensors and
time samples.
Future research will include improving performance

by using ux sensors, dealing with non-selective sen-
sors, investigating e�ects of more realistic tidal cur-
rent, pollutant release and measurement models, and
including adaptive sampling.
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