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ABSTRACT

A signal restoration problem can be formulated as a least-
squares inversion subject to a constraint that the signal has no
more thank piecewise monotonic segments. We refer to the as-
sociated constraint ascontrolled piecewise monotonicityor CPM.
We show that this constraint alone is powerful enough to stabilize
an ill-posed inversion and enables us to incorporate the knowl-
edge about the waveform geometry of the signal. This leads to
a new algorithm for constrained signal restoration. We describe
a highly efficient iterative scheme for computing the CPM con-
strained least-squares restoration. We also present experimental
results and discuss issues related to the new algorithm.

1. INTRODUCTION

We consider a classic signal restoration problem:

y = Hx+ e (1)

wherex is the original signal which is distorted by a degrading
operatorH and additive noisee, yielding an observed signal,y.
The task is to restorex fromy with some knowledge aboutH and
e. In many cases, the degrading operatorH is, or can be modeled
as, a linear shift-invariant lowpass filter. Then the restoration ofx

based on the model of (1) is a “deblurring” type inverse problem
which is notoriously ill-posed.

A popular approach to solving an ill-posed inverse problem is
by regularization. Let us consider a regularized solution to (1) in
discrete-time wherey ande arem � 1 vectors,x is ann � 1
vector andH is anm� n Toeplitz matrix. Instead of solving (1)
directly, the signal restoration problem can be recast as a functional
minimization subject to some constraints

x� : Min
�
�� = jjy �Hxjj2 + �jjCxjj2

	
(2)

where jj � jj denotes thè 2 or least-squares norm,C is a regu-
larizing operator, and� > 0 is a parameter to be determined
by matching specified constraints. (2) is known as the Tikhonov
regularization[1] of the ill-posed inversion of (1). It is essentially
a constrained least-squares (CLS) minimization that has a closed-
form solution:

x� = (H�

H+ �C�

C)�1
H
�

y (3)

whereH� andC� denote the Hermitian transpose ofH andC;
respectively.

The Tikhonov regularization is achieved by smoothing. The
regularizing operatorC defines how a solution is smoothed, while
the parameter� controls the degree of smoothing. It is worth not-
ing that when�! 0, (3) becomes the solution to an unconstrained
least-squares (UCLS) minimization problem without any smooth-
ing:

Min
�
� = jjy �Hxjj2

	
with respect to x: (4)

On the other hand, when�!1; smoothing is dominant. Smooth-
ing is necessary for suppressing noise, but it also undermines one’s
capability of deblurring. In the Tikhonov regularization, the re-
quired amount of smoothing is proportional to the noise level.
Consequently, one can achieve little of deblurring in a very noisy
environment.

Another limitation of the Tikhonov regularization is associated
with the regularizing operatorC. In general,C is chosen to be a
highpass filter. Then the second term in the cost functional of (2)
prescribes a penalty for excessive high frequency energy in the
solution. This results in global smoothing which is undesirable
in the regions where the signal has sharp transitions and/or high-
frequency details.

Over the last two decades, there has been extensive research in
iterative signal restoration. It was shown that many signal restora-
tion techniques including the Tikhonov or the CLS method can be
unified in a large family of iterative restoration algorithms[2, 3, 4].
More importantly, the iterative approach provides a flexible frame-
work for one to incorporatea priori knowledge about the signal
and noise in the form of multiple, linear or nonlinear constraints.

In this paper, we present a new algorithm for constrained iter-
ative signal restoration. The innovation lies in a unique constraint
that we callcontrolled piecewise monotonicity; we build a new
form of CLS restoration based on this constraint. We show that
this constraint alone is powerful enough to stabilize the ill-posed
inversion and enables us to incorporate the knowledge about the
waveform geometry of the signal. We also describe a highly ef-
ficient numerical algorithm for computing such constrained least-
squares restoration and present experimental results.

2. LEAST-SQUARES RESTORATION SUBJECT TO
CONTROLLED PIECEWISE MONOTONICITY

We repose the signal restoration problem as follows:
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Figure 1: Piecewise monotonicity and local extrema. The signal
shown here has 5 monotonic segments joined by 4 local extrema.

xk : Min
�
�k = jjy �Hxjj2

	
subject to

the constraint that xk has no more than

k � piecewise monotonic segments: (5)

This is a nonlinear CLS problem. We refer to the associated
constraint ascontrolled piecewise monotonicity(CPM). Before we
attempt to solve this CLS problem, we examine what is meant by
CPM and why it can be an appropriate constraint.

2.1. Piecewise Monotonicity as Model and Constraint

Most signals in the real world can be described as piecewise mono-
tonic. Let us consider a discrete signal represented by a sequence
fx[n]g such as the one in Figure 1. This signal has5 piecewise
monotonic segments. Note that our definition of monotonicity is
in non-strict sense. As such, our first monotonically increasing
segment includes a constant part. In general, a signal may contain
M piecewise monotonic segments, whereM is a positive integer.
We say a signal isM�piecewise monotonicif the signal hasM
piecewise monotonic segments. The points joining two consecu-
tive monotonic segments are calledturning points. It is easy to see
that there areM�1 turning points in anM�piecewise monotonic
signal, and they correspond to the local extrema of the signal.

Signals can be classified by the number of piecewise mono-
tonic segments they contain. For example, all signals inRn hav-
ing no more thank piecewise monotonic segments can be grouped
into a set that we denote byZk. Clearly,Zk is a collection of
M�piecewise monotonic signals for1 � M � k. Note that the
locations of the turning points are not specified, therefore,Zk is a
non-convex set.

The number of piecewise monotonic segments,M , provides a
measure of fluctuation or oscillation in a signal. It is well-known
that noise tends to be highly oscillatory. Indeed, a noisy signal
often has a largeM . This suggests that we may seek to limit the
number of piecewise monotonic segments in a signal in order to
control or reduce noise. More specifically, for a discrete signal
x = fx[n]g, we can constrain the signal to have no more thank
piecewise monotonic segments. This is the CPM constraint in (5),
which can now be expressed mathematically as requiringx 2 Zk.
As we will show later, the CPM method proves to be very effec-
tive for denoising and stabilizing an ill-posed inversion. It is worth
pointing out that denoising based on the CPM constraint is very

different from a lowpass-filtering-type smoothing. For example,
it is well-known that lowpass filtering results in ringing artifacts
(Gibbs effect) near sharp transitions in a signal, such as a step
edge. On the other hand, the CPM method prevents ringing from
happening during denoising since ringing is as much oscillatory as
(or more oscillatory than) noise.

The CPM method enables us to incorporatea priori knowl-
edge about the signal. For example, we can prescribek based on
an estimatedM of the signal from our knowledge about the wave-
form geometry of the signal. In some applications, such as MR
spectroscopy, we often have a fairly good estimate ofM . In more
general cases,k may need to be computed separately or jointly
in (5). In the following sections, we consider solving (5) withk
given.

2.2. Least-Squares Piecewise Monotonic Approximation

As we have mentioned previously, the CPM constraint in (5) re-
stricts the solutionxk 2 Zk. SinceZk � Rn, for an arbitrary
sequenceu 2 Rn, enforcing the CPM constraint can be accom-
plished by projectingx to Zk. Denote byPZk the projection op-
erator, andv the orthogonal projection ofu onZk. PZk is defined
under thè 2 norm:

PZk(u) : Min
�
jju� vjj2

	
subject to v 2 Zk: (6)

It turns out that the key to implementingPZk is to compute a
least-squares piecewise monotonic approximation tou. This prob-
lem was studied in depth by Demetriou and Powell[5]. These au-
thors developed a highly efficient algorithm for this purpose. Un-
fortunately, their work seems to be largely unknown to the signal
processing community. Two recent applications of Demetriou and
Powell’s algorithm that we know of are due to the author of this
paper and his associates[6, 7].

Assume the sequenceu in (6) isM -piecewise monotonic. If
M � k, u 2 Zk, therefore,v = PZk (u) = u. In general cases,
M > k. The major task in computingv is to determine the opti-
mal locations of a new set of turning points,ftj : j = 1; :::; pg,
p � k. Indeed, this appears to be a formidable combinatorial
problem. Fortunately, much less work is actually needed because
of a decomposition property of the optimal solution discovered
by Demetriou and Powell[5]. This property allows the use of dy-
namic programming. Another important and interesting property
of the optimal solution shows that the set of optimal turning points
ftj : j = 1; :::; pg must be a subset of the local extrema ofu.
This further reduces the amount of computation. Once the set of
ftj : j = 1; :::; pg is determined, a least-squares monotonic ap-
proximation is computed independently for each segment. In the
end, the use of Demetriou and Powell’s algorithm for piecewise
monotonic approximation has a complexity ofO(knM). We refer
readers to the original work of Demetriou and Powell[5] for a de-
tailed presentation of their algorithm. Figure 2 gives an example
of denoising using Demetriou and Powell’s algorithm.

2.3. Iterative Restoration with CPM Constraint

We compute a solution to the CLS restoration problem (5) using
the following iterative algorithm:

x0 = 0;

xj = PZk(xj�1 + �H�(y�Hxj�1)); j � 1: (7)



0 50 100 150 200 250 300
70

75

80

85

90

95

100

105

110

115

120

Figure 2: Denoising as piecewise monotonic approximation.
A noisy signal (dashed line) is denoised (solid line) by using
Demetriou and Powell’s algorithm withk = 2.

where0 < � < 2=jjH�Hjj. We give below some explanations
and comments about the algorithm.

(7) shows that at each iteration the CPM constraint is enforced
byPZk (�)which projects the sequence in(�) toZk. Some readers
may have already recognized that if we dropPZk , (7) will become
the Van Cittert iteration that converges to the minimum-norm so-
lution to the unconstrained least-squares inversion (4). The Van
Cittert-type algorithm, also known to some researchers as Bialy
or Landweber iteration, has been studied extensively[2, 3, 4]. Our
algorithm combines the CPM constraint with the Van Cittert iter-
ation to solve the CLS problem (5). Since the Van Citter iteration
is convergent with an appropriate choice of�, and the projection
operationPZk(�) is non-expansive, the convergence of algorithm
(7) is assured.

3. EXPERIMENTS

We tested our algorithm with a large number of simulated signals.
In the experiments, we blurred the signal with some commonly
encountered degrading operators such as the Gaussian. We also
added noise to the blurred signal. Then, we used algorithm (7)
with a prescribedk to restore the signal. To assess the quality of a
restoration, we define the signal-to-noise ratio (SNR):

SNR = 20 log
10

�
jjujj

jju� vjj

�
dB (8)

whereu is the original signal andv is a distorted or restored signal.
Figure 3 shows the results from one of the experiments. The

original signal in Figure 3(a) is composed of segments of linear
and exponential functions. It has 8 piecewise monotonic segments.
The signal was blurred by a Gaussian with a standard deviation
� = 4 and added with noise. The distorted signal is shown in
Figure 3(b); it has a SNR of 9.96 dB. Figure 3(c) shows a signal

restored by algorithm (7) withk = 10 for 100 iterations; the im-
proved SNR is 20.78 dB. The restored signal in Figure 3(d) was
obtained in the same way except thatk = 8 was used; the im-
proved SNR is 21.17 dB.

4. DISCUSSION

It appears to us that the CPM constraint alone is sufficient to sta-
bilize the deblurring-type inversion in a very noisy environment.
The numberk plays a critical role in the restoration. Excellent
results are obtained when the prescribedk is close to the actual
number of piecewise monotonic segments that the original signal
has. Whenk is larger than necessary, we observe some spurious
artifacts (see Figure 3(c)). This is because by prescribing a larger
k we accept a higher degree of fluctuation in the signal. Consider
an unconstrained inverse filtering. It can be completely dominated
by noise. When we use the CPM constraint with a largerk, we
essentially allow certain part of noise to grow. Nonetheless, the
noise is prevented from exploding. It is conceivable that ifk is too
small, some features (i.e., peaks) in the signal may be wiped out.
In practice, it may be hard to get a perfectk, but one can often
get into a right range by trials. It is also possible to includek as a
variable to be optimized in (5).

The CPM constraint can be used in other types of signal restora-
tion and reconstruction problems. For example, we have success-
fully used it to stabilize bandlimited extrapolation as well as recon-
struction of a signal from its wavelet extrema representation[7].
We are very interested in generalizating this paradigm to 2-D for
solving image restoration problems. Intuitively, the CPM con-
straint in 2-D may be quite appropriate because an image is natu-
rally segmented into piecewise smooth regions by edges. It follows
that a CPM constraint may be used to limit the number of regions
or the number of edges in an image. Unfortunately, a straightfor-
ward generalization from 1-D is not available because monotonic-
ity in 2-D needs to be associated with an orientation on a surface.
It is even more ambiguous to speak of piecewise monotonicity for
a surface.
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Figure 3: Signal restoration with the CPM constraint. (a) A simulated signal having 8 piecewise monotonic segments; (b) blurred by a
Gaussian (� = 4) and added with noise, SNR=9.96 dB; (c) restored using algorithm (7) withk = 10 for 100 iterations, SNR=20.78 dB;
(d) same as in (c) but withk = 8, SNR=21.17 dB.


