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ABSTRACT

Periodic modulation precoders allow blind identi�ca-
tion of SISO channels from output second-order cyclic
statistics, irrespective of the location of channel zeros,
color of additive stationary noise, or channel order over-
estimation errors. In this paper the performance of
blind channel estimators relying on periodic precoders
is investigated. Criteria for optimal designs of periodic
modulation precoders are also presented.

1. INTRODUCTION

By inducing cyclostationarity (CS) at the transmit-
ter, it has been shown that blind identi�cation of FIR
single-input single-output communication channels is
possible only from the output second-order statistics
and without using any assumption on the channel ze-
ros, color of additive noise, and channel order over-
estimation errors [10], [5], [2], [8].

In the present work, we consider the performance
analysis of blind channel estimators when CS is in-
duced at the transmitter by means of a periodic mod-
ulation precoder. Consider the simpli�ed baseband
discrete-time channel shown in Fig. 1, where the zero-
mean independently and identically distributed (i.i.d.)
input stream s(n) is modulated by the deterministic
and periodic sequence p(n) with period P , to obtain
w(n) = p(n)s(n), with p(n) = p(n + P ) 8 n. Sequence
w(n) propagates through the unknown channel h(n),
whose output x(n) is corrupted by the stationary noise
v(n) assumed to be uncorrelated with the inaccessible
input s(n). The input-output relation is described by

y(n):=x(n) + v(n) =
LX
l=0

h(n� l)w(l) + v(n) ; (1)

where L denotes the order of the discrete-time channel
h. The time-varying correlation at time n and lag �
of sequence w(n) is de�ned by cww(n; � ) := Ew(n +
� ) w�(n), and satis�es cww(n; � ) = jp(n)j2 �2s �(� ) =
cww(n+ lP ; � ), 8 l; � 2 Z; � stands for conjugation, j � j
denotes absolute value, and �2s:=Ejs(n)j2 = 1 (source

power normalized to unity). The output time-varying
correlation cyy(n; � ) is given by

cyy(n; �) = �
2

s

1X
m=�1

jp(n�m)j2h(m+ �)h�(m)+ cvv(�): (2)

It follows from (2) that cyy(n; � ) is also a periodic
function in n since cyy(n; � ) = cyy(n + P ; � ), for any
n; � . Being periodic, cyy(n; � ) accepts a Fourier Series
expansion over the set of complex exponentials with
harmonic cycles, and with the set of cycles de�ned as:
Ac
yy:=f2�k=P; k = 0; : : : ; P � 1g; i.e., cyy(n; � ) and

its Fourier coe�cients C11y(k; � ), called cyclic correla-
tions, are related by the discrete Fourier Series:

C11y(k; � ) =
1

P

P�1X
n=0

cyy(n; � )e
�j2�kn=P : (3)

We consider only non-zero cycles k 6= 0 such that the
contribution of the additive stationary noise is can-
celled out. Thus, we have

C11y(k; � ) = �2sP2(k)
1X

m=�1

h(m + � )h�(m)e�j2�km=P(4)

P2(k) :=
1

P

P�1X
n=0

jp(n)j2e�j2�kn=P : (5)

The Fourier transform of the cyclic correlationC11y(k; � ),
for a �xed cycle k, is called the cyclic spectrum and is
given by (c.f. (4))

S11y(k; e
j2�f ) = �2sP2(k)H(ej2�f )H�(ej2�(f�

k
P
));
(6)where H(ej2�f ):=

PL
n=0 h(n)e

�j2n�f .
The blind channel estimators based on the second-

order statistics can be categorized in two classes: 1)
the linear (or subspace) approaches that estimate di-
rectly the channel from a linear system of equations
[1], [9], [2], [8], and 2) the nonlinear approaches based
on the minimization of a certain nonlinear cost func-
tion [6], [8]. The advantages of one class with respect
to the other are well-known [6]. For the periodic mod-
ulation framework, it has been shown that the linear
approaches guarantee identi�ability when the period is
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Figure 1: Periodic Modulation Precoder

chosen to satisfy P � L+1, while nonlinear correlation
matching requires only P > [L=2] [2], [8]. The main
disadvantages of the nonlinear approach lie in its high
computational complexity and local convergence prob-
lems. However, since nonlinear correlation matchings
o�er the lowest asymptotic covariance matrix, they are
useful in practice since their performance serves as a
benchmark for the linear approaches. Next, we study
the asymptotic performance of these algorithms. Due
to the reduced amount of space, the proofs of all results
are omitted, and we refer the reader to [3].

2. BLIND CHANNEL ESTIMATION AND

PERFORMANCE ANALYSIS
We consider �rst the signal subspace formulation of the
linear approach.

2.1. Signal Subspace Approach

By collecting all the second-order cyclic spectral infor-
mation into the vector

s(ej2�f ):=

2
6664

S�11y(P � 1; ej2�f )
S�11y(P � 2; ej2�f )

...
S�11y(1; e

j2�f)

3
7775 ; (7)

it is easily seen that s(ej2�f ) can be factorized as (see
(6))

s(ej2�f ) = �2sh(e
j2�f )H�(ej2�f ) (8)

where

h(ej2�f ):=

2
6664

P �2 (1)H(ej2�(f�
1
P
))

P �2 (2)H(ej2�(f�
2
P
))

...

P �2 (P � 1)H(ej2�(f�
P�1
P

))

3
7775 : (9)

For a (P � 1)-dimensional vector a = [a1; :::; aP�1]T

de�ne the (P � 1)(P � 2)=2� (P � 1) matrix

F(a) =

2
666666666664

�a2 a1 0
... 0

. . .

�aP�1 0::: 0::: a1 0
0 �a3 a2

...
. . .

�aP�1 a2
...

...
...

3
777777777775
:

The channel estimation algorithm we propose relies on
the orthogonality between the rows of F(h(ej2�f )T )
and the columns of h(ej2�f ). We have the result:
Theorem 1: The subspace equation

F �xT (ej2�f )� s(ej2�f ) = 0; (10)

over the set of (P � 1)-dimensional polynomial vectors
having the structure (9) has a unique solution (within
a constant) x(ej2�f ) = h(ej2�f ).

The extraction of the channel vector h:= [h(0)
: : : h(L)]T is performed by re-writing the orthogonal-
ity condition in the time domain. The Laurent expan-
sion of s(z) can be written s(z) =

PN
�=�N s(� )z�� , with

s(� ):=[C11y(P � 1;�� ); :::; C11y(1;�� )]T and N � 2L.
De�ne s:=[s(N )T :::s(�N )T ]T . Associate to an arbi-
trary M th degree polynomial F (z) the (N +1)� (M +
N + 1) Toeplitz matrix TN (F ) with the �rst column
and row [F (0) 0 : : :0]T and [F (0) : : :F (M ) 0 : : :0], re-
spectively. Eq. (10) can be re-written in the forms

T2N�L
�F(xT (ej2�f ))� s = 0 ;
D(s)X = 0 ;

(11)

where the matrix D(s) is de�ned as

D(s):=

2
64

F(sT (N )) ::: ::: F(sT (N � L))
...

...
F(sT (�N + L)) ::: ::: F(sT (�N ))

3
75;

andX :=[X (0)T ; :::;X (L)T ]T :According to (9), we have
X = Px, where x:=[x(0); :::; x(L)]T and P is the block-
diagonal matrix whose (k; k) block is:

[P]k;k = [P �2 (1)e
i2�k=P ; :::; P �2 (P � 1)ei2�k(P�1)=P ]T :

The following identi�ability result holds:
Theorem 2: If P � L, the quadratic form

Q = P�D(s)�D(s)P (12)

admits a kernel of dimension 1 generated by h.
Given the observations fy(n)gT�1n=0 , the cyclic correla-
tion at cycle k and lag m can be estimated using:

Ĉ
(T )
11y(k;m) :=

1

T

T�1X
`=0

y(` +m)y�(`) e�j2�k`=P : (13)

The estimator Ĉ
(T )
11y(k;m) is mean-square sense (m.s.s.)

consistent and asymptotically normal since h(l) has �-
nite memory and w(n) has �nite moments. The es-
timation of unknown channel vector h is obtained by
minimizing the quadratic form:�

ĥ = arg min x�Q̂x
s. to xT�x = 1

; (14)

where the estimate Q̂ is obtained by replacing the un-
known statistics with the consistent estimates (13). De-
�ne the vector dk(ei2�f ) := [1 e�i2�f :::e�i2�fk]T : We
have the asymptotic result:
Theorem 3: If the input is circularly distributed and
the additive noise is white and Gaussian, then

lim
T !1

TE
n
(ĥ� h)(ĥ� h)T�

o
= �1 + �2; (15)

where for i=1,2, we have set

�i = QyP�D(s)��iD(s)PQy; (16)



with

�1=
P�1X
`1=0

ei2�
`1N

P

Z 1

0

d2N�L(e
i2�f )

�d�2N�L(ei2�(f�
`1
P
))
T(`1)(ei2�f )df;

T(`1)=F �hT (ei2�f )�M(`1)(ei2�f )
�
H(ei2�(f�

`1
P
))

�H�(ei2�f ) + �`1c11v(0; 0)
�F� �hT (ei2�(f� `1

P
))
�
;

matrixM(`1)(ei2�f ) is (L� L) with

[M(`1)(ei2�f )]n1;n2=H(ei2�(f�
n1
P
))H�(ei2�(f�

`1+n2
P

))

+ �`1+n2�n1c11v(0; 0);

�2=

Z 1

0

Z 1

0

d2N�L(e
i2��1 )d�2N�L(e

i2��2)


U(ei2��1 ; ei2��2)d�1d�2;

U(ei2��1 ; ei2��2)=F �hT (ei2��1 )��(ei2��1 ; ei2��2)

�F� �hT (ei2��2)� ;
matrix �(ei2��1 ; ei2��2) is also (L � L) with

[�(ei2��1 ; ei2��2)]n1;n2=c22s(0)�(n1; n2)H(ei2�(�1�
n1
P
))

�H�(ei2�(�2�
n2
P
))H(ei2��2)H�(ei2��1 );

�(n1; n2) = �

P�1X
j1; j2; j3; j4 = 0

j1 � j2 + j4 � j3
� n1 � n2

�j1�
�
j2�

�
j3�j4 ;

� denotes the input kurtosis, and

�k =
1

P

P�1X
n=0

p(n)e�i2�
kn
P :

2.2. Nonlinear CorrelationMatching Estimator

It is easy to verify the following relations
C11y(k;m) = ej2�km=P C�11y(P � k;�m) ; (17)

C11y(k;m) = 0 8 jmj > L : (18)

The conjugate symmetry in the lags (17) and mem-
ory constraint (18) imply that all the non-redundant
second-order statistical informationabout the complex-
valued channel is contained at most in the set:

K:=fC11y(k;m); k = 1; 2; : : : ; [P=2];m= �L; : : : ; Lg:
The cyclic correlations associated to the set K and their
sample estimates are collected into the vectors

c := [C11y(1;�L); : : : ; C11y([P=2];L)]
T
;

ĉ(T ) :=
h
Ĉ
(T )
11y(1;�L); ; : : : ; Ĉ11y([P=2];L)

iT
:

The normalized asymptotic covariance of ĉ(T ) is de�ned
as:

�:= lim
T!1

TEf[ĉ(T ) � c][ĉ(T ) � c]T�g : (19)

The nonlinear correlation matching estimator �nds the
channel estimate bh such that the cyclic correlations c
are closest to the observed correlations bc(T ) in the least-
squares sense. More precisely,

bh:=arg minhJ [ĉ
(T );h]; J [ĉ(T );h]:=[ĉ(T )�c]T�[ĉ(T )�c]:

(20)
The following theorem establishes the consistency and
the asymptotic performance of the cyclic correlation
matching algorithm [7], [6].

Theorem 4: The estimate ĥ obtained by minimizing
J [ĉ(T );h] over a compact set converges in the mean-
square sense to h provided that s(n) has �nite mo-

ments. The asymptotic covariance P(bh;h) for the match-
ing approach (20) is:

P(bh;h) = G(h) � GT (h) ; (21)
where

G(h) := [FT (h) F(h)]�1FT (h) ;

F(h) := [rh(1)c : : :rh(L)c]:

provided F(h) is full column rank.

3. SELECTION OF THE PRECODER

The following result holds [3]:
Theorem 5. If in (6) P2(k) = P2(l), 8k; l = 0; : : : ;
P � 1, and v(n) = 0, then �1 = �2 = 0.
The constraint on P2(k)'s translates into the fact that
the periodic sequence takes P � 1 values equal to zero
within one period. From an identi�cation viewpoint,
such sequences are optimal. However, note that for
such sequences, P � 1 symbols every P consecutive
symbols are lost. From an equalization viewpoint, less
constraints have to be imposed on such sequences. One
solution is to impose the equality only for P2(k), k =
1; : : : ; P � 1, since in this case many terms in �1, �2

cancel out, and the equalization becomes well posed.
Since the dependence of cyclic correlation C11y(k; � )

for a given cycle k 6= 0 is proportional to P2(k), it is
natural to introduce as a measure of CS induced by the
modulating sequence p(n) the constants P2(k). High
values for P2(k) imply a high degree of CS for the out-
put sequence y(n). In practice, the sample cyclic corre-
lations are estimated from a �nite number of samples.
Thus, the residual noise due to noise/�nite sample ef-
fects is present in our estimation approaches. Note that
a small value of P2(k) (� 0) would imply that the cyclic
correlations at cycle k assume small values. Thus, an
additive noise of small power will highly a�ect the val-
ues of these cyclic correlations, and thus, the perfor-
mance of the estimation algorithm drops signi�cantly.
In order to stress out the dependence on the periodic
sequence p, we will use the notation P2;p(k) instead
of P2(k). We pose the general question: do there ex-
ist periodic sequences fp(n)gPn=1 which under a power



constraint, i.e.,
PP

n=1 jp(n)j2 = �, and the equaliza-
tion constraint minn=1;:::;P jp(n)j � �(> 0), are such
that P2;p(k) � P2;f (k), for any k = 1; : : : ; P � 1 and
for any periodic sequence ff(n)gPn=1 which satis�es the
power/equalization constraints? The answer is:
Theorem 6. The optimal sequences under power and
equalization constraints are given modulo a permuta-
tion and a phase-shift by

fjp(n)jgPn=1 = f�; : : : ; �;
p
�� (P � 1)�2g : (22)

It follows that Theorem 7 corroborates the conclusions
of Theorem 6.

4. SIMULATION EXPERIMENT

The asymptotic results have been compared with the
simulation results for a real GSM channel of order L =
5 with coe�cients h = [0:632� 0:007i; 0:046 + 0:075i;
�0:231�0:383i,�0:256�0:186i, 0:413+0:346i]T. Fig.
2 shows the simulation and theoretical results for two
periodic modulating sequences p1 = f1; 1; 1; 1; 2g=p8
and p2 = f1; 1;

p
2;

p
2;

p
2g=p8. We note that

both sequences satisfy the same power / equalization
constraints. In Fig. 2, the normalized asymptotic co-
variance of the channel coe�cients is plotted versus
number of samples. The theoretical values are traces
of the asymptotic covariance matrix and the simulation
values are

RMSE =
1

jjhjj

vuut 1

MC

MCX
m=1

jjĥ(m) � hjj2 ;

where ĥ(m) signi�es the channel estimate in the mth
Monte-Carlo run. The signal-to-noise ratio is �xed at
SNR = 10 dB, and MC = 100 Monte-Carlo simula-
tions are performed. Note that the use of the optimal
sequence p1 o�ers a much better performance than the
suboptimal sequence p2. Note also the good agreement
between simulation results and theoretical expressions.
Performance of the subspace algorithm is improved by
the nonlinear correlation matching algorithm only with
suboptimal p(n)'s.
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Figure 2: Simulation Results


