
ABSTRACT

Inverse remote sensing problems are generally ill-posed.
In this paper, we propose an approach, which integrates
the dense media radiative transfer (DMRT) model, snow
hydrology model, neural networks and SSM/I microwave
measurements, to infer the snow depth.  Four multilayer
perceptrons (MLPs) were trained using the data from
DMRT model.  With the provision of initial guess from
snow hydrology prediction, neural networks effectively
invert the snow parameters based on SSM/I measure-
ments.  In addition, a prediction neural network is used to
achieve adaptive learning rates and good initial estimate
of snow  depth for inversion.  Result shows that our algo-
rithm can effectively and accurately retrieve snow param-
eters from these highly nonlinear and many-to-one
mappings.

1.  INTRODUCTION

It is of great practical interest to realistically and effi-
ciently infer the spatial distribution and time evolution of
snow parameters (e.g., snow water equivalent, snow
depth, snow grain size, etc.) from sensed measurements.
One mechanism is to use the passive microwave bright-

ness temperatures  to retrieve the snow parameters ,
which is of the general classes of inverse problems in
remote sensing.

The inverse problems are difficult for the following rea-
sons [1].  Firstly, the relationship between remote sensing
measurements and the geophysical snow parameters is
highly nonlinear.  Secondly, the inverse mapping is often

many-to-one, i.e., more than one set of parameters
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could count for the set of measurements .  Thirdly, the
inversion problem is often in a form similar to that of a
Fredholm equation of the first kind, making the inversion
ill-conditioned.  Finally, existing parameter retrieval algo-
rithms [1,2] mainly consisted of matching a type of mea-
surement to model predictions, while ignoring other
available information [3].  Moreover, the brightness tem-
perature measurements are known to be not only influ-
enced by snow water equivalent, but also by snow grain
size, snow temperature and snow density, which are not
effectively modeled in the retrieving algorithms in the
past [8].

In this paper, we developed a multi-parametric neural net-
work inversion algorithm using multi-frequency and dual
polarization measurements.  In the inversion process,
snow hydrology model provides initial estimates of the
snow parameters for the trained neural network to itera-
tively calculate the snow parameters using SSM/I mea-
surements.  This inversion process is also facilitated by a
prediction neural network, which regresses the past time
evolution of snow parameters, to finetune the initial esti-
mates from snow hydrology model and to speed up the
inversion convergence by adaptively controlling the learn-
ing rates.

Section 2 of this paper presents the basics of neural net-
work.  Section 3 describes our inversion algorithm and the
prediction neural network.  Section 4 presents the simula-
tion results, and conclusion is given in Section 5.

2.  NEURAL NETWORK BASICS

In a multi-layer network, neurons are interconnected in a
varying number of layers to provide greater computational
complexity.  By adjusting the weights, a neural network
can be trained to perform a range of different input-output
functions.  Once the neural network has been trained, the
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network can be inverted to generate input vectors which
would produce a desired output [1].  The inversion uses an
idea similar to the back propagation algorithm, where
error signals are back propagated to determine the inputs
the manner in which to change so as to decrease the out-
put error (see Figure 1).  This process can be expressed by
the following equation:

 ,     (1)

where  is the mean squared error between the desired

outputs  and the actual outputs , and  is the
learning rate.

3.  INVERSION DRIVEN BY SNOW
HYDROLOGY

The objective of our approach is to make use of more rele-
vant information to improve the inversion accuracy.  Fig-
ure 2 depicts how the DMRT model, snow hydrology
model and neural network are integrated to work.

3.1 Training with DMRT Data

In passive microwave remote sensing, the microwave
emission from the ground surface and the snowpack is
measured. The radiation is scattered and absorbed by the
snowpack as function of its temperature, depth, grain size,
fractional volume, and other parameters. The model used
to simulate the microwave interaction with the snowpack
is the dense media radiative transfer (DMRT) model [6].
Unlike the traditional radiative transfer models, the
DMRT takes into account the dependency of scattering
upon relative particle positions which is important in a
dense media such as snow. In this framework, the model
incorporates a particle size distribution using a modified
gamma distribution. Therefore, a medium contains parti-
cles with different sizes, such as snow, can be accounted
for. The model accounts for scattering by the snow parti-
cles as well as the interaction at the snow/soil interface
and the snow/air interface.
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The training data from DMRT model contains 7 inputs
(snow depth, snow temperature, grain size, fractional vol-
ume, roughness polarization, maximum grain size, and
ground permittivity) and 4 outputs (brightness tempera-
tures for 19GHz vertical polarization, 19GHz horizontal
polarization, 37GHz vertical polarization, and 37GHz
horizontal polarization). Based on the dynamic ranges of
snow depth, four neural networks were trained through
the back propagation algorithm, and each network is in
charge of one segment of DMRT model with different
snow depth range.

3.2  Incorporation with Snow Model

The snow hydrology model was originally developed as
part of the Distributed Hydrology-Soil-Vegetation Model
(DHSVM) [5,8].  Snow accumulation and melt are simu-
lated using a two-layer energy-balance model that explic-
itly incorporates the effects of topography and vegetation
cover on energy exchange at the snow surface [7].  During
melt conditions the snow pack is assumed isothermal at
0˚C. The model accounts for net radiation, sensible and
latent heat exchange, and the energy advected by rain.
Precipitation below a threshold temperature is assumed to
be snow, which is added to the amount of water stored in
the snow pack. The model accounts for the cold content of
the snow pack, which must be satisfied before melt can
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Figure 1. Illustration of training and inversion of a neural
network.  The performance of inversion highly depends on
the initial estimate of inputs.
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occur.

The snow hydrology model also makes use of topographi-
cal and meteorological data, the later of which includes
precipitation, air temperature, humidity, wind speed,
incoming shortwave radiation, and incoming longwave
radiation.  For the current application to the sites in the
Northern Hemisphere we used the surface meteorological
data supplied by NASDA, augmented with historical sta-
tion data from NCAR (NCAR dataset:ds512 CAC Global
CEAS Summary of Day/Month Obs, 1979-cont).

With the initial estimates for snow parameters from snow
hydrology model, the trained neural network predicts the
brightness temperatures which are then compared with
SSM/I measurements, and the difference is back propa-
gated to adjust the snow parameters.  The neural network
iterative inversion executes until the snow parameters
converge [2,9].  We then use these updated snow parame-
ters as inputs to the snow hydrology model and move on
to the next time step.  With the combining runs of both
models, we get the spatial distribution and time evolution
of snow water equivalent.

3.3  Prediction Neural Network

In the iterative inversion process, it is of great importance
to choose appropriate learning rates for inputs to expedite
convergence.  Moreover, good initial estimates for snow
parameters, especially for snow depth, is helpful to the
inversion, especially to maintain the continuity of the
inverted snow parameters.  To achieve this objective, a
prediction neural network is used.

The prediction neural network was trained with ground
truth of snow depth regularly sampled at given stations.

Given the time series of ground truth , the predic-

tion neural network is trained to predict , based on the

past 6 data, i.e., .  During the

inversion of snow parameters at some regions, we keep a
record of inverted snow depth for the designated predic-
tion neural network, which is trained by the ground truth
data from the station near the center of the region.  With
this record as the inputs to prediction neural network, the

output gives the predicted snow depth .  Note

that, we also have a snow depth from snow hydrology

model , we can then construct the initial esti-
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mate of snow depth , as the weighted sum of them:

 ,      (2)

where is a user defined constant.  Only through this

combination of information, we can ensure a reliable ini-
tial estimate of snow depth.

A relative error  is computed to determine the learning

rate:

 .                           (3)

If it is greater than a given threshold, we set the learning
rate to a larger value; otherwise, we set to a smaller value.
This adaptive learning rate determination improves the
convergence speed of snow parameter inversion.

4.  SIMULATION RESULTS

Our algorithm has been applied to stations in the Northern
Hemisphere, and results agree quite well with the ground
truth.  To verify the usefulness of our algorithm, we exten-
sively compare the performance under three situations:

(1) running only the snow hydrology model itself;
(2) running the snow hydrology model and the neural

network inversion without using the prediction neu-
ral networks;

(3) running the snow hydrology model and the neural
network inversion with the use of the prediction neu-
ral network.

Figure 3 shows the snow depth retrieving results over
Alaska-USA (station ID: 70231, Mcgrath) for winter of
1994-1995.  To quantitatively compare the performance
of all methods, we define the average percentage error as:

%, (4)

when ,

where is the ground truth snow depth data, and

is the result under different situations.  The aver-

age percentage errors are also included in Figure 3.

From the curves, we can see that snow hydrology model
captures the gross characteristics of the snow depth time
evolution.  Neural network inversion without prediction
was found to enhance the performance, and inversion with
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prediction could give further improvement, which cuts the
percentage error from 24.15% (Situation 1) and  14.42%
(Situation 2) to 11.51%.

5.  CONCLUSION

Through the incorporation of snow hydrology model with
the SSM/I microwave satellite measurements, we make
use of information relevant to the inverse remote sensing
problem.  The DMRT model takes into account the depen-
dency of scattering upon relative particle positions which
is important in a dense media such as snow.  Snow hydrol-
ogy model introduces other information, such as topo-
graphical and meteorological data, which are helpful to
narrow down the solutions in many-to-one inverse prob-
lems.  The neural network training well approximates the
nonlinear relations between snow parameters and bright-
ness temperature measurements, and the prediction from
the past information (snow depth) further improves the
retrieving performance.
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