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ABSTRACT

In this paper, we propose some new modeling techniques that pro-
vide a more synergistic approach to multistage time-domain speech
compression. In particular, we propose a new error criterion for
determining all-pole filters, and a unique method for jointly coding
the pulse information in excitation vectors. The new error crite-
rion for determining all-pole filters is based upon minimizing the
sum of the residual signal’s absolute values raised to a power less
than one. It is shown to be a desirable cost function for yield-
ing residual signals that are more sparse, and consequently better
suited for multistage compression than Linear Prediction residuals.
Statistical reasons supporting the new criterion are also provided.
Furthermore, exploiting the properties of, and the relationship be-
tween, the Linear Prediction and Minimum Variance spectra, we
propose a novel parameter set for jointly coding the excitation
vector’s pulse position, sign, and gain information.

1. INTRODUCTION

In speech compression, the class of Linear Prediction Analysis by
Synthesis (LPAS) coders has achieved much success [1]. In LPAS
coders, the task of compression is broken into several stages. We
propose some new modeling techniques that attempt to provide
tighter coupling between the multiple stages of time-domain speech
coders, and thereby provide a framework for moving towards truly
synergistic multistage coders that enable more efficient coding.

In particular, we propose a new error criterion for determin-
ing all-pole filters, and a unique method for jointly coding the
pulse information in codebook excitation vectors. The new error
criterion for determining all-pole filters, 1=A(z), constructs cor-
responding first-stage analysis filters, A(z), that explicitly try to
produce sparse residual signals with few dominant non-zero val-
ues. In particular, the filter tries to minimize the sum of the residual
signal’s absolute values raised to a power p less than one, i.e. min-
imize
P

jrij
p; 0 < p < 1: In contrast, existing LPAS coders

use Linear Prediction analysis filters corresponding to a value of
p = 2 which yield residuals that are not explicitly well-suited for
encoding by the pitch and codebook stages. Both deterministic
cost function and statistical arguments are shown to justify the new
error criterion, and its promotion of sparse residuals.

With sparse residuals from an FIR analysis filter, a parsimo-
nious representation of the codebook excitation is desirable. We
propose a novel method for jointly coding pulse position, sign, and
gain information of excitation vectors in time-domain coders. This

This research was supported by UC MICRO Grant 97-146 and by
Hughes Electronics.

method is based on an exploitation of the properties of, and the
relationship between, the Linear Prediction and Minimum Vari-
ance Distortionless Response (MVDR) Spectra [7]. In most LPAS
coders, the codebook excitation pulse positions, signs, and ampli-
tudes are quantized separately. The technique proposed for jointly
modeling the excitation vector information allows for systematic
tradeoffs between bit allocation and codebook excitation accuracy
in a manner hitherto not possible.

2. ALL-POLE FILTERS WITH SPARSE RESIDUALS

In this section, we present a new method for obtaining FIR analysis
filters which producesparse residuals with few large energy entries.
First, we consider the popular speech production model. In most
time-domain coders, a frame of speech s(n); 0 � n � N � 1, is
modeled as an Auto-Regressive (AR) process,

s(n) =

MX

k=1

�ks(n� k) + e(n) (1)

where the�k’s are the AR parameters, ande(n) is the driving noise
process.

The speech production model (Eq. 1) in matrix form is

y =Hx + r; (2)

wherey is theN�1 vector containing theN speechsamples s(n),
H is the N�M matrix of speech samples in which the ith column
contains the samples ranging from s(�i); � � � ; s(N � (i + 1)), x
is the M � 1 vector of AR parameters �k, and r is the N � 1
residual, consisting of the excitation sequence,e(n).

The filter parameters x = [�1�2 � � ��M ]T , corresponding to
an analysis filter of A(z) = 1 � �1z

�1 � �2z
�2 � � � � �Mz�M ,

are found by minimizing a function of the residual r.

2.1. A New Error Criterion For Sparse Residuals

To produce sparse residuals, the filter parameters of A(z) are de-
termined by the new error criterion

x̂ = arg min
x

lim
p!0

NX

i=1

jrij
p; (3)

where ri; 1 � i � N are the elements of r. As p goes towards
zero, the influence of the small values in the residual increases
while the influence of the large residual values decreases, and the
sum counts the number of non-zero elements, the true measure of
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Figure 1: Comparison of jxjp cost functions

sparsity. The cost function provides an incentive for x̂ to produce
residuals with values close to zero.

In Linear Prediction, a value of p = 2 is fixed in Eq. 3,
and corresponds to the minimization of the `2 norm of r. By
minimizing the sum of the squares of the residual, r, the Linear
Prediction filter is very sensitive to, and over-influenced by, large
errors which are common for voiced speech pitch pulses, thereby
producing residuals that are not sparse in nature and are not ideal
for compression purposes.

Previous attempts to change the error criterion employed in
all-pole filter parameter estimation for time-domain coding have
centered around minimizing Eq. 3 for fixed values of p; 1 � p �
2 [2], [3], although in [4], the sum of a weighted residual was
minimized. Minimizing the `p; 1 � p � 2 norms provides filters
which dampen the influence of the large residuals, but not to a
large degree. For example consider Figure 1. In this figure, the
cost functions for three values of p are compared. It is clear that
a value of p < 1 provides more incentives for providing small
residuals, because the small residuals are weighted more heavily.
In contrast, the conventional value of p = 2 which corresponds to
the Linear Prediction cost function weights large residual values
more than small residual values, thereby providing overall residual
signals that are not sparse in nature.

In practice, a value of p must be fixed in Eq. 3, and in general,
we explore 0 < p < 1. Although the resulting sparsity measure
is not strictly a norm, it does yield analysis filters with sparse
residuals. We now provide a statistical justification for choosing
0 < p < 1.

2.2. Statistical Interpretation of the Sparse Residual Measure

The Linear Prediction solution can be viewed as the Maximum
Likelihood Estimate (MLE) of an AR process driven by a Gaus-
sian noise sequence r. The minimization of the `1 norm of r can
be viewed as the Maximum Likelihood Estimate of an AR process
driven by Laplacian noise. For `p; 1 � p � 2 minimization, the
sequencer driving the AR process can be viewed as having a gen-
eralized Gaussian density function ce�jxj

p

, of which the Laplacian
is a special case. With values of 1 � p � 2, density functions of the
residual sequencehave heavier tails than the Gaussian distribution,
and consequently admit larger errors in the residual. However, in
previous studies, values of p < 1 were not considered.
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From a statistical point of view, values of p < 1 are desirable
because the density functions in these cases have a sharper slope
near zero, and have heavier tails. A peak at zero and a steep slope at
zero indicate that the likelihood function is quite sensitive to values
near zero and its maximization should encourage small values to
become smaller. On the other hand, the heavy tails along with the
lowered sensitivity of the likelihood to large values should support
a few large entries. For example, consider Figure 2. In this figure,
the function e�jxj

p

is plotted for values of p = 0:5;1; 2. It is
apparent that for the value of p = 0:5, the function has a much
sharper slope at values of x close to zero, and has heavier tails
than the other functions. Consequently, by allowing 0 < p < 1,
the new error criterion is geared towards sparse residuals from a
likelihood viewpoint.

2.3. Computation with the Sparse Residual Measure

For a given value of 0 < p < 1, Eq. 3 must be computed. There
is no closed form solution and therefore numerical methods must
be employed. The solution can be found using the Iteratively
Reweighted Least Squares (IRLS) algorithm [5], in which a se-
quence of solutions to weighted least squares problems must be
computed. In particular, the solution x̂ is found by

for k = 0; 1;2; � � �

r(k) = y�Hx(k)

Dk = diag((jr(k)j)(p�2)=2)

x(k+1) = arg min
x
kDk(y �Hx)k2

k = k+ 1

where x(0) is initialized to the Linear Prediction solution. It can
be shown that

PN

i=1 jr
(k+1)
i jp �

PN

i=1 jr
(k)
i jp even when p < 1,

meaning that this is a descent algorithm.

2.4. Simulation Results

In practice, the utilization of the sparse residual measure in all-
pole filter design leads to analysis filters whose residuals often
feature sharper pitch spikes and more sparsity than corresponding
Linear Prediction filter residuals, especially for voiced speech. For
example, consider Figure 3. Here the original speech is shown
on top, the 30th order Linear Prediction residual is shown in the
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Figure 3: Original voiced speech (top), 30th order Linear Predic-
tion residual (middle), new filter (30th order) with sparse residual
measure, p=0.5 (bottom)

middle, and the new filter’s residual signal with p = 0:5 is shown
at the bottom.

In this example, the benefits of the new filter are quite apparent
as its residual has most of its energy concentrated in a few places
corresponding to multiples of the pitch. In general, for a large filter
M to frame size N ratio, the new error criterion based on a sparse
measure does provide a filter that yields sparse residuals, especially
for voiced speech. This is consistent with the goals of multistage
time-domain coders in which a sparse residual is desired. For
implementation and utilization in a practical compression system,
more study is needed as the filter order and interpolative properties
become more important.

3. A NOVEL METHOD FOR MODELING EXCITATION
INFORMATION

With a sparse residual, the task of pitch and codebook excitation
determination is made simpler. The codebook excitation can be
determined by using basis selection methods to find a sparse solu-
tion to a linear system [6]. Now we present a unique method for
jointly coding the codebook excitation information in time-domain
speech coders that achieves a parsimonious parametric represen-
tation. Typical excitation vectors in Multi-Pulse and Algebraic
CELP coders contain a few pulses each with associated gain and
sign information. For example, for a subframe of size Ns = 40,
usually K = 5 pulses are employed, each pulse with its own po-
sition, sign, and for Multi-Pulse coders, each with its own gain.
In most coders, the pulse positions, signs, and gains are quantized
separately.

Using properties of, and the relationship between the Lin-
ear Prediction filter and the Minimum Variance Distortionless Re-
sponse (MVDR) spectrum, [7], we propose a novel method for
jointly coding the K pulse positions, signs, and gains. We show

that the K pulse positions, K signs, and K gains can be exactly
represented by 2K�1 reflection coefficients and one prediction er-
ror variance that both correspond to a single filter. We now discuss
some properties of Linear Prediction and MVDR spectra relevant
to the encoding scheme.

3.1. Properties of Linear Prediction and MVDR Spectra

First we define an input signal consisting of the sum ofK real cosine
signals, u(n) =

PK

i=1
ci cos(!in) and corresponding correlation

sequence ruu(m) =
PK

i=1 2S(!i) cos(!im), where S(!i) =

jcij2=4. The input signal exhibits a discrete line spectrum at the
positive and negative frequencies�!i; i = 1; � � � ;K with spectral
powers S(!i).

Lemma 1. Define r(m) =
PK

i=1
2S(!i) cos(!im) a correlation

sequence, a Linear Prediction filter AM (z) with order M = 2K
has zeros at the 2K positive and negative frequencies �!i; i =
1; � � � ;K , i.e. AM(e�j!i ) = 0.

Therefore, an M th order Linear Prediction filter places its
filter zeros at the frequencies of the line spectrum, providing accu-
rate frequency location information, but not amplitude information
since for any of the spectral line frequencies,AM (e�j!i) = 0.

Now we state a property of the MVDR spectrum that we exploit
for modeling amplitude information. The MVDR spectrum is also
known as the Minimum Variance spectrum, or Capon’s Method.

Lemma 2. Define r(m) =
PK

i=1
2S(!i) cos(!im), a correlation

sequence. The MVDR spectrum P
(M)
MV (!) of order M = 2K � 1

models the powers of the line spectra exactly, i.e. P (2K�1)
MV (!i) =

S(!i).

Details of MVDR spectral modeling of exponentials are in [8].
With the results on Linear Prediction modeling of frequency loca-
tion information, and MVDR modeling of amplitude information,
we can state the following.

Theorem. Define r(m) =
PK

i=1
2S(!i) cos(!in) with !i 6=

0; �. Then the Prediction error variance P (2K�1)
e and reflection

coefficients Γm;m = 1; � � � ; 2K � 1 corresponding to a 2K �
1 order Linear Prediction filter A2K�1(z) based on r(m), are
sufficient to recover the line frequency locations!i and the spectral
powers S(!i) exactly.

Outline of Proof. Note that from the given r(m) and the
constraints !i 6= 0; � , we know that Γ2K = 1. Consequently the
given Γm;m = 1; � � � ; 2K�1, are sufficient to construct the order
2K Linear Prediction filter A2K(z). From Lemma 1, A2K(z) has
its filter zeros at the frequencies!i. The Γm;m = 1; � � � ; 2K � 1
and P

(2K�1)
e can be used to obtain the order (2K � 1) MVDR

spectrum [7]. From Lemma 2, P (2K�1)
MV (!) models the spectral

powers exactly at the line frequencies, !i.

3.2. Joint Pulse Position and Amplitude Coding

Consider the coding of K pulses from an excitation vector of
length Ns. Typical values are K = 5 and Ns = 40. The K
pulses have positions p1; p2; � � � ; pK , and are allowed to range
from 1 � pi � Ns. Each pulse pi is weighted by sigi where si is
the sign of the pulse, and gi is its positive gain value.



Part I: Encoding.
For ease of presentation, we first consider a case where all the

signs are positive, i.e. si = 1.
Step 1. An autocorrelation sequence is constructed as follows

r(m) =

KX

i=1

2gi cos(�
pi

Ns + 1
m): (4)

This sequence has a corresponding discrete line spectrum in the
frequency domain. The “sampling frequency” corresponds to
Ns + 1 and the spectral peaks are positioned at frequencies !i =
�pi=(Ns + 1) which encode the pulse position information. The
line spectra at the frequencies !i have corresponding powers gi
which encode the amplitude information.

Step 2: The 2K � 1 order Linear Prediction filter reflection co-
efficients Γm; m = 1; � � � ; 2K � 1 and corresponding prediction
error variance P (2K�1)

e are computed using r(m) from Eq. 4, and
sent to the decoder.

Step 2 is motivated by the above theorem which suggests that
the parameter set computed is adequate for recovering pulse posi-
tion and amplitude information.

Part II: Decoding.
Step 1: The order 2K Linear Prediction filter A2K(z) is con-
structed from the given Γm;m = 1; � � � 2K�1, and with Γ2K = 1.
From Lemma 1, the zeros of A2K(z) are found at the frequencies
!i which give pulse position information.

Step 2: The order 2K � 1 MVDR spectrum is directly computed
from the given Γm values and prediction error variance P (2K�1)

e

[7]. From Lemma 2, the 2K � 1 order MVDR spectrum models
the gain information exactly, i.e. P (2K�1)

MV (!i) = gi.

We can easily incorporate both positive and negative signs
by modifying the construction of the correlation sequence. By
utilizing multiples of 0:5�=(Ns + 1), we can incorporate sign
information. For negative signs, we follow the convention of
adding the fractional frequency value 0:5�=(Ns+1) to the original
line frequency. In particular, if si = �1, we add 0:5�=(Ns+1) to
the original frequency�pi=(Ns+1) to obtain a new line frequency
value �(pi + 0:5)=(Ns+ 1) that is used in the construction of the
correlation sequence in Eq. 4.

3.3. Example of Joint Coding

Consider encoding K = 5 pulses at positions (5; 7; 8; 12;30)
with corresponding gains (�1; 10;�7; 4;3). The correlation se-
quence in Eq. 4 with the sign modifications is constructed and the
(2K�1) = 9th order Linear Prediction reflection coefficients and
P
(2K�1)
e are transmitted by the encoder. The decodercomputes the

2K = 10th order Linear Prediction filter from the transmitted re-
flection coefficients and prediction error variance, using Γ2K = 1.

The Linear Prediction filter’s frequency response is evalu-
ated at 2(Ns + 1) = 82 points corresponding to frequencies
!k = �k=(Ns + 1); k = 0; 0:5;1; 1:5;2; � � � ; 40;40:5 as shown
in the top of Figure 4. The bins in the figure are numbered from
1 to 82. Consequently 5 zeros of the LP analysis filter are dis-
covered at bins (12;15; 18;25;61). This corresponds to positions
(5:5;7; 8:5;12;30). The presence of non-integer values indicates
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Figure 4: At the top, The Linear Prediction analysis filter is evalu-
ated at 2(Ns+ 1) points in the frequency domain. The filter zeros
are used to determine the pulse position and sign information. The
MVDR spectrum below is used to determine the gains of the pulses

that the first and third pulses are negative (i.e. s1 = s3 = �1), and
the true pulse positions are (5;7; 8; 12;30).

The MVDR spectrum of order 2K�1 = 9 is constructed, and
is sampled at the positions of the 2K = 10th order Linear Pre-
diction filter’s zeros to determine gain information (1; 10;7; 4; 3).
Using the sign information from the Linear Prediction filter, we
determine pulse amplitudes of (�1; 10;�7; 4; 3).

In summary, the LP filter’s zero location property is used to
locate the pulse positions and obtain the sign information, and
the MVDR spectrum’s accurate amplitude modeling is used to
obtain the pulse gains. In terms of practical systems, the reflection
coefficients need to be accurately quantized in order to preserve
the pulse location information and relative amplitude information.
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