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ABSTRACT

Is multi-band ASR inherently inferior to a full-band approach
because phonetic information is lost due to the division of the
frequency space into sub-bands? Do the phonetic transitions in
sub-bands occur at different times? The first statement is a com-
mon objection of the critics of multi-band ASR, and the second,
a common assumption by multi-band researchers. This paper is
dedicated to finding answers to both these questions.

To study the first point, we calculate phonetic feature trans-
mission for sub-bands. Not only do we fail to substantiate the
above objection, but we observe the contrary. We confirm the sec-
ond hypothesis by analyzing the phonetic transition lags in each
sub-band. These results reinforce our view that multi-band speech
analysis provides useful information for ASR, particularly when
band merging takes place at the end state for a phonetic or syl-
labic model, allowing sub-bands to be independently time-aligned
within the model.

1. INTRODUCTION

There has been much interest generated in the speech recognition
community on multi-band ASR since Jont Allen’s cogent retelling
of Harvey Fletcher’s work on articulation index [4, 1]. The main
idea of this approach is to divide the signal into separate spectral
bands, process each independently (typically generating state prob-
abilities or likelihoods for each), and then merge the information
streams, as shown in Figure 1. Some of the motivations for this
multi-band approach are:

� If the speech signal has different signal-to-noise ratios per
band, multi-band ASR shows graceful degradation [2, 10].

� It has been posited that acoustic evidence for sound unit
identities occur at different times in different parts of the
spectrum, particularly in the presence of reverberation or
unusually slow or rapid speech.

� Statistical modeling may be improved by simpler and less
variable signals and lower dimensionality of the feature set.

� Rao and Pearlman [9] have proven theoretically, and shown
with simulations, that auto-regressive spectral estimation
from sub-bands offers a gain over full-band auto-regressive
spectral estimation.

� Multi-band ASR is well suited for taking advantage of par-
allel architectures.

� Human speech perception may be similar [4, 1].

The most common objection to the use of separate statistical
models for each band has been that important information in the
form of correlation between bands may be lost. Our experience
and that of our colleagues has been that recognition performance
has not been hurt by this approach, but in the work reported here we
examine the estimator performance in a more detailed fashion. In
particular, we analyze the phonetic feature transmission pattern in
each sub-band, the merged multi-band, and full-band probability
streams. As discussed in Section 3, we use methods similar to
those of Miller & Nicely [7] and calculate confusion matrices for
phone and feature classes, and use mutual information as a measure
of information transmission in a channel.

In the second part of the paper, we focus our attention on the
following: some multi-band researchers [2, 10, 8] have postulated
that transitions in sub-bands occur asynchronously,and that a phone
or syllable level merging of multi-band streams is necessary to
permit independent alignment for each band within the merged
unit. However, this hypothesis has not been analyzed; neither has
there been a study of transition boundary shifts in the presence of
speech signal variations (such as room reverberation or speaking
rate). Without such evidence, we could not justify consideration
of longer-term merging units for multi-band ASR. In Section 4, we
examine this assumption by analyzing the transition lags in each
sub-band to see if sub-band transitions occur asynchronously.
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Figure 1: A simple overview of multi-band.

2. DATABASE & SYSTEM DESCRIPTION

We use the Oregon Graduate Institute NUMBERS95 database,
which comprises continuous digits and numbers recorded over the
telephone as a part of census data collection. The database is
phonetically hand-transcribed. For the purposes of this study, we
use approximately two hours of the database for training and cross
validation, and forty minutes as a test set.

Our baseline full-band system is an HMM/MLP based [3]
system. We train the MLP phonetic probability estimator on a nine-
frame window of 8th-order RASTA-PLP [5], energy, and delta-



RASTA-PLP features for every 25 msec window, stepped every 10
msecs. The MLP is fully connected and has 153 inputs (9 frames
with 17 features per frame), 1000 hidden units, and 56 outputs (one
output for each phone1), and is trained using backpropagation with
softmax normalization at the output layer. The system is trained on
hand-transcribed phone labels (without embedded realignment).
Using a multiple pronunciation lexicon (derived from the hand
transcriptions), and a bigram language model, the word error rate
(WERR) of this baseline system on the test set is 7.9%.

For our multi-band system, we divide the frequency range into
four bands of [300-800Hz]2, [700-1600Hz], [1500-2700Hz], and
[2100-3800Hz]. From the sub-bands, we derive [3rd, 3rd, 2nd,
2nd] order RASTA-PLP features, respectively, as well as energy
and corresponding deltas. We train four MLPs on these acoustic
features, that is, one on each sub-band. The input layer to each
MLP has a context window of nine frames, for total input layer
sizes of [72, 72, 54, 54] respectively. We choose hidden layer sizes
of [497, 497, 372, 372], respectively, so that the total number of
parameters in the four MLPs and the full-band system are roughly
equal. There are 56 output units, one for every phone, as in the
full-band MLP1. The frame-by-frame information from the four
sub-band streams is combined using a merger MLP, which takes
the output of the sub-band MLPs as input, has 300 hidden units,
and an output of 56 phones1. The WERR on the test set for this
merged multi-band system is 8.2%. The performance difference
between the baseline and multi-band systems is not statistically
significant.

3. IS PHONETIC INFORMATION LOST?

3.1. Experimental Setup

The first question we want to answer is whether any phonetic
feature information is lost in multi-band ASR. For this analysis we
use phone and broad category confusion matrices, as in the seminal
studies of Miller and Nicely [7] on human speech recognition.

A confusion matrix (CM) is simply an extended matrix of hits
and misses for all classes, as in Table 1. The column headings
represent the features we intend to transmit, and the row head-
ings correspond to the received features. In Table 1, for example,
93 instances of /s/ are perceived as /eh/. We use frame level
phonetic classification on the test set for generating phone CMs.
To better observe the patterns in the data, we collapse the phone
CMs according to membership in broad category feature classes
(as in Table 2), and generate feature confusion matrices (example
in Table 3). We classify phonetic classes according to six broad
categories: CV (consonant, vowel, silence), duration (short, long,
mid), frontness (front, back, neither), manner (vowel, diphthong,
liquid, glide, stop, closure, nasal, fricative, silence), place (high,
low, mid, labial, dental, coronal, palatal, retroflex, velar, glottal,
silence), and voicing (voiced, unvoiced).

To summarize the confusion matrix, we calculate mutual in-
formation (MI) for each CM [7] as

P
i;j

pijlog
pij

pipj
, where i is

the feature we would like to transmit, and j is the feature that
is perceived. We estimate the probabilities pij , pi, and pj from
nij=n, ni=n, and nj=n, respectively, where ni is the frequency
of stimulus i, nj is the frequency of response j, and nij is the

1Note that some of the 56 phones do not occur in the NUMBERS
database and have zero priors.

2Because we are testing on telephone quality speech, we disregard
frequencies from 0 through 300Hz.

t s eh sil ...

t 5722 252 31 316 ...
s 258 8495 110 1159 ...

eh 11 93 3118 37 ...
sil 436 2733 68 40237 ...
... ... ... ... ... ...

Table 1: An example of a phone-based confusion matrix.

vowel consonant silence

t - + -
s - + -

eh + - -
sil - - +
... ... ... ...

Table 2: An example of binary acoustic features for CV classifica-
tion.

frequency of the joint occurrence of stimulus i and response j in a
sample of n observations.

We can further calculate the transmission of each phonetic
sub-feature (e.g., sub-feature fricative 2 manner), by reducing the
full CMs to a 2x2 CM for each sub feature and sub feature)
(the results in Figure 3). Finally, the maximum possible feature
transmission for the idealized condition is the MI of a similar
dimensioned identity matrix. This maximum is 1.0 for two features,
1.58 for three, and so on.

3.2. Observations

Figure 2 shows all features, and Figure 3 shows sub-features of
manner transmitted as a percentage of the maximum. We observe
the following:

1. Multi-band feature transmission is always as good as or bet-
ter than the comparable full-band system, except for front-
ness. On average, 47.15% of the features are transmitted for
the multi-band system compared to 45.48% for the full-band
system for 54000 acoustic frames.

2. The results are consistent with our knowledge of acoustic
phonetics, as, for example, we would expect the low fre-
quency band to contain the most information about voicing.
Comparing our results with [7], we observe similar patterns
also for fricatives and nasals.

vowel consonant silence

vowel 74393 6962 1816
consonant 6738 61030 5055

silence 2321 8922 49281

Table 3: An example of a feature-based confusion matrix.



3. Low and sometimes mid frequency bands (often band 1 and
sometimes band 2) transmit most of the feature information
alone. For example, band 2 transmits 87% of the frontness
features that are transmitted by the full-band system.

4. There is much redundancy in phonetic information content
in the sub-bands, as the sum of information transmission
over all bands far exceeds 100%. Lippmann [6] has high-
lighted this redundancy as a source of human robustness to
speech degradations.
In the next section, we examine the transition asynchrony
hypothesis.
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Figure 2: Phonetic features transmitted as a percentage of maxi-
mum possible, as measured by mutual information.
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Figure 3: Manner of articulation features transmitted as a percent-
age of maximum possible, as measured by mutual information.

4. DO TRANSITIONS OCCUR ASYNCHRONOUSLY?

Multi-band researchers have posited that transitions occur asyn-
chronously in sub-bands, and a phone or syllable level merging of
multi-band streams may be necessary. In this section we study this
hypothesis.

4.1. Experimental Setup

In order to obtain the phone transition boundaries, we perform
forced alignment on each sub-band independently. Furthermore,

to allow maximum freedom of shifting in transition boundaries,
we perform embedded realignment (i.e., Viterbi realignment and
retraining the MLP in each iteration) for six iterations. The WERR
on the NUMBERS95 cross-validation set is our stopping crite-
rion, and it reaches a minimum value after the second iteration of
realignment.

Instead of using our usual multiple pronunciation lexicon, we
use whole-sentence models in the forced alignment to insure that
identical phone sequencesare taken in each sub-band. We generate
whole-sentence models using the phonetic hand-transcriptions and
the corresponding average phone durations.

We also generate these statistics on the digitally-reverberated
versions of the data, as well as on fast and slow speech. The
reverberant data set was generated by convolving the clean set with
an impulse response measured in a room having a reverberation
time of 0.5 s and a direct-to-reverberant energy ratio of 0 dB. The
cutoff for fast (slow) speech is set to one standard deviation above
(below) the mean rate of the training set. The speaking rates were
determined from a count of manually transcribed phones over non-
silence regions.

For any given phone transition, we calculate the transition lags
in each sub-band as compared to 1) the full-band, and 2) other
sub-bands. Figure 4 show the histograms of average transition
lags of the four sub-bands with respect to the full-band for broad
phonetic categories, where each plot in row feat1 and column feat2
corresponds to a feat1 �! feat2 transition.

4.2. Observations

Examining the generated statistics, we observe that sub-band tran-
sitions do indeed occur asynchronously. More precisely:

1. Transition lags (with respect to the full-band transition bound-
aries) have a Gaussian distribution, with a mean close to
zero, indicating that on average the transition lags happen
in both directions, and a standard deviation of [2.8, 3.3, 5.0,
5.6] frames for the sub-bands, respectively. The higher the
frequency range, the more shifted are the transition bound-
aries compared to the full-band.

2. More distant sub-bands have less agreement in transition
boundaries, as the � of transition lags between sub-bands 1
and 4 is 5.9 frames, and between sub-bands 1 and 2 is 3.8
frames.

3. 30% of the sub-band transitions do not occur within 50
msecs of each other. Similarly 44%, 41%, and 21% of the
transitions for reverberated, slow, and fast data, respectively,
do not occur within 50 msecs of each other.

4. Some broad category transitions are sharp (e.g., sil! stop),
and some have a relatively flat distribution (e.g., vowel !
liquid) (see Figure 4 for more examples).

For contrast conditions of speaking rate and room reverbera-
tion, we also found strong changes in transition timing, as reflected
in a modified variance rather than a systematic difference in the
means. Table 4 shows that for 3 out of the 4 bands, the standard
deviation of the per-band lag decreases as speaking rate increases,
which conforms to the intuition that phone durations decrease with
rate. The table also suggests that the higher frequency transitions
are most sensitive to speaking rate variations.

Table 4 further confirms our intuition that reverberation should
affect transitions more at low frequencies than at high frequencies,
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Figure 4: Histogram of average transition lags for broad phonetic
categories for the four sub-bands. Each frame corresponds to 10
msecs. /h#/ is the end/beginning of sentence silence.

Condition band 1 band 2 band 3 band 4

Slow 3.7 3.6 9.8 9.2
Medium 2.8 3.1 4.2 5.1

Fast 2.1 4.1 2.8 3.6

Reverb 4.0 4.4 5.5 6.3
Clean 2.8 3.4 5.0 5.6

Table 4: Standard deviation for sub-band transition lags as com-
pared to the full-band transition boundaries.

since most common room boundary materials are less absorptive
at low frequencies, leading to longer reverberation times at those
frequencies.

5. CONCLUSIONS

We have tested two common assumptions on multi-band ASR: 1)
the objection of the critics of multi-band ASR that it is inherently
inferior to a full-band approach because phonetic information is
lost due to the division of the frequency space into sub-bands; and
2) the assumption by multi-band ASR researchers that transitions
in bands often occur asynchronously (i.e., at different times than
the full-band transition).

To study the first point, we calculated phonetic feature trans-
mission for sub-bands. Not only did we fail to substantiate the
above objection, but we observed the contrary. We confirmed the
second hypothesis by analyzing the transition lags in each sub-
band.

Our exploration of the first question further showed that, even
when using a simple multi-band merging method, phonetic fea-
tures are transmitted better (47.15% for our database) than the
comparable full-band system (45.48%).

For the second question, we found that there is no consistent

delay or expedition of phone transitions in a frequency-dependent
manner, as the per-band transition lags had a mean close to zero.
However, the spread of these transition lags were both dependent on
frequency and on contrast conditions (speaking rate and reverber-
ation). In particular, roughly one-third of the sub-band transitions
in the control condition do not occur within 50 msecs of each other.
Furthermore, the high frequency band timings have a spread that
is strongly dependent on speaking rate.

It appears that sub-band alignments can have significant timing
deviations from the full-band alignments; thus, we would expect
that there is a potential for improvements in acoustic modeling
if longer time-scale information stream merging (i.e., phone or
syllable) is used.
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