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ABSTRACT multiple overlapping copies of the signal are received. The fre-

gquency domain model used in [1, 2] for time-delay estimation is

This paper considers the problem of estimating the time delays andgeneralized to incorporate the presence of (small) frequency off-
doppler shifts of a known waveform received via several distinct sets. The resultingignal manifoldin the frequency domain can
paths by an array of antennas. The general maximum likelihood he seen as a generalized version of the signal manifold of [1, 2], in
estimator is presented, and is shown to requide-g@imensional  much the same way that polarization [3, 4, 5] and local scattering
non-linear minimization, wheré is the number of received signal [6] generalize the standamtray manifoldin direction of arrival
reflections. Two alternative solutions based on signal and noise(DOA) estimation. This observation motivates the development of
subspace fitting are proposed, requiring ond¢@dimensional min-  sybspace-based techniques similar to those in [4, 5, 6], which pro-
imization. In particular, we show how to decouple the required yjde closed-form solutions for the linear parameters (in our case,
search into a two-step procedure, where the delays are estimateg¢he frequency/doppler offsets). The resulting algorithms require a
and the dopplers solved for explicitly. Initial conditions for the  search for the time delays, but it is seen that for small frequency

time delay search can be obtained by applying generalizations ofoffsets, the closed-form time-delay estimation techniques of [1, 2]
the MUSIC and ESPRIT algorithms. provide excellent initial conditions.

1. INTRODUCTION 2. MODELING

The problem of using an antenna array to estimate the time de-Suppose am-element antenna array receives several scaled, time-
lays and doppler shifts (or frequency offsets) of a known signal is delayed, and frequency/doppler-shifted copies of a known base-
important in two common applications. First, in active radar and band signals(t). The received signals could, for instance, be the
sonar, a known waveform is transmitted and reflections from ob- echoes from a pulse transmitted by an active radar, or they could
jects “illuminated” by the transmission are subsequently received. result from a training sequence sent over a multipath communica-
The received signals are often modeled as scaled, delayed, angion channel. In either case, we may model the output of the array
doppler-shifted versions of the transmitted signal. Estimation of for small frequency/doppler offsets as

the signal amplitude, delay, and doppler shift provides informa-

tion about the position and relative motion of the objects. The d ]
second application involves estimation of the parameters of a mul- x(t) = Z aps(t — m)e?“Prt +n(t), 1)
tipath communication channel in situations where the transmitter k=1

is rapidly moving or has an unknown frequency offset. For ex-
ample, consider a situation where a remote mobile user transmitsvhered represents the number of different multipath signals, and
a known waveform (e.g., a training sequence) to a basestation forvhere the parameters,, wp,, and a; are the time-delay, fre-
synchronization or equalization purposes. If the channel is fre- quency offset, and spatial signature of thth arrival. The additive
guency selective (non-zero delay spread), then the signal will be N0ise vectorn(t), is assumed to be a zero mean temporally and
received with several distinct delays. In addition, due to the mo- SPatially white noise process with covariangdl. The standard

tion of the mobile and variations in the carrier frequency of the harrowband assumption is employed here. Note that, for the radar
transmitter, the known signal can also be received with a small fre- case, the frequency offsetp, is a narrowband approximation to
quency offset. Estimation of the delays and frequency offsets, asthe stretching or shrinking of the frequency axis due to the doppler
well as the spatial signatures of the signal arrivals, is necessary ineéffect induced by the relative motion of the reflecting target.
establishing a clean, inter-symbol and interference-free communi-  The frequency domain representation of the array output in (1)
cation link. This paper presents a novel approach to solving the is given by
problems described above. The techniques presented are appli-

cable in situations involving multiple antennas and, unlike classi-

cal methods, are asymptotically optimal at high SNR even when x(w) =Y ags(w —wp, )e 7™ 4+ n(w), (2)
k=1
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dependence of (2) on the doppler frequencies by neglecting thein the DOA model, the delay/doppler model uses a “signal” mani-

higher order terms in the Taylor series expansios(af — wp, ) :

s(w1 —wpy) s(wr) d(w1)

I~ . — WD,

s(wy —wpy) s(wn) d(wn)

®)

where a total ofV snapshots are collected from the array, and

A
=s—wp,d

0s(w)
Ow

w=w;

d(w;) =

Assuming thatx(w) is anm x 1 column vector, the data at fre-

qguenciesvi, .. . ,wn May be arranged in matrix form as
x" (w1)
X 2
X7 (wy)
= ( SV(r) -DV(r)®(w) ) A+N
£ Q(rw)A+N, @
where
T=[n a)"
w = [wp, wpy]
A =a; aq)”
S = diag(s)
D = diag(d)
V(r) =[v(n) ... v(7)]

v(r) = [exp(—jwiT) ... exp(—jwnT)]"
P (w) = diagw)

and where, for example, di&g) is a diagonal matrix with the ele-
ments of the vectap along its diagonal. The columns &(7, w)
have the following form:

q(Tk,ka) = SV(Tk) - kaDV(Tk) .

fold g(7&,wp, ) in N-space. A further parallel is drawn in [7] by
comparing (4) with the generalized array manifold that is associ-
ated with polarized antenna arrays [4, 5] and signals with angular
spread [6].

In practice X is obtained by performing a DFT on the time do-
main data inX;. As such, the translation of time delays into a
linearly increasing phase shift 7™ does not hold exactly, except
in certain special cases involving, for example, a periodic signal or
a signal with finite time support. However tif — ¢t1 > maxy, 7
and the signal is sampled at least at the Nyquist rate, then the error
induced by the finite length DFT will be small, and the frequency
domain model will be a reasonable approximation (this is illus-
trated by the simulation results in Section 4).

3. SUBSPACE-BASED ESTIMATION METHODS

In this section we describe algorithms for time delay and fre-
quency/doppler offset estimation based on Noise Subspace Fitting
(NSF) [8, 9], Signal Subspace Fitting (SSF) [8, 10, 9], MUSIC [3]
and ESPRIT [11]. It will be shown that due to the special structure
of the signal manifold in the frequency domain, both NSF and SSF
reduce to al-dimensional search for the delay parameters. Of the
two, SSF is expected to be more robust when the spatial signature
matrix A is nearly rank-deficient, or when the time-delay differ-
ences are very small [9]. Both methods require initial estimates of
the + parameters, and for this purpose the MUSIC estimator and
an ESPRIT-based estimator are described. The MUSIC estimator
requiresd one-dimensional searches, while the ESPRIT estimator,
which ignores the doppler shifts, does not require any search.

3.1. Noise Subspace Fitting

The NSF loss function for the problem at hand may be written as
[5, 8]

Vivsr(r,w) = tr {Q"(r,w)E. B; Q(r,w)U},  (6)

wheretr {-} denotes the matrix tracg,)” the conjugate transpose,
() the pseudo inverse, and

U=Q'(+,)B,WE!Q" (+,0) (7)
7 andw are consistent (initial) estimates-efandw, W is a diag-
onal weighting matrixE; is the matrix whose columns are the left
singular vectors corresponding to tlidargest singular values of
X, andE, isaN x (N —d) matrix whose columns are orthogonal
to those off;. The choice of the matri¥v depends on whether it

is desired to approximate the so-called deterministic or stochastic
ML solution (see [8, 9] for details). In the simulations presented

By interchanging the roles of the samples in time and space, thelater, we use the stochastic ML weighting

delay and doppler estimation problem can be cast into the more

familiar framework of DOA estimation. To see this, compare (4)
with the standard model used in DOA estimation:

X = A(0)S + N, )

where@ is a vector containing the DOAs of the signals. In (5),
A is a known function of thel parameters i), andS is usually

treated as an unknown unstructured matrix. On the other hand, in

(4) it is Q that is parameterized anAl that is unstructured. In

essence, the roles of time (frequency) and space have thus been

reversed. Instead of the array manifal@) in m-space employed

W = (A, —6°I)°A;", (8)
whereA is a diagonal matrix formed from thélargest squared
singular values oX, andés? is a consistent estimate of the noise
variance (obtained, for example, as the average afithel small-
est squared singular valuesX¥yj. Introduce

M(r) = V*D*PDV —-V*D*PSV

| =V*S*PDV V*S*PSV
or

© |: -[j—T :| )

ij

or )



wheren(w) = [ w" e" J,e=[1 -+ 1]"isdx1land Then, minimization with respect to yields the estimate
P = E,E;,. SettingdVysr/0w = 0 yields H=0ta. 17)

@ = M7, Mise, (10) Inserting (17) into the cost function leads to the following criteria

o . for estimatingr:
where the real part of the matrid () has been partitioned into gr

d x d blocks: #=argmin p—a’ Q 'a —tr {CCTESWE:} . (18)
ReM(T1) = { ﬁ“ _M” ] . Note that the computation required to evaluate the SSF criterion
—via1 22 can be significantly simplified by performing the trace calculation

Substituting (10) into the cost function leads to the following cri- 1" (18) as

teria for estimating-: tr {CCTESWE;‘} — tr { (CTES> W (E; C) } . (19

T = arg min e’ (M22 - MEMﬁle) e, 11) The SSF algorithm is implemented by performing the
o dimensional search in (18). As with NSF, the SSF method requires
which is the sum of the elements of the Schur complemeM of consistent initial estimates of both and w to form T, which
in Re M(7). Itis worth mentioning that, since typically > d, is then used in calculatin® anda. Such estimates can be ob-
it is advantageous to compule asP = I — E;E; rather than  tained using either the MUSIC or ESPRIT approaches presented
P =E,E;. in the following subsections, or by an initial application of SSF

The NSF algorithm is implemented by performing da with T = L
dimensional search of the criterion in (11). As mentioned above,
consistent iAnitiaI estimates af andw are required for computing 3.3 MUSIC
the matrixU used in the NSF criterion. One way of obtaining
U would be to first implement the NSF algorithm with = I, In the standard MUSIC algorithm [3] for DOA estimation, the
and use the resulting estimates to form the optifdal Setting DOAs are determined to be thievalues off) that makea(6) nearly

U = Iis equivalent to using the MUSIC approach described later Orthogonal ok, according to the following measure:
in this section. There are two drawbacks associated with the NSF *

- : - . a*(0)E,E;a(0)
algorithm: first, the algorithm is not always able to resolve closely Vu(f) = ———F .

: e a*(f)a(0)

spaced components i and second, the algorithm’s performance
may deteriorate when the rows Afare linearly dependent, which  In the delay and doppler estimation problem, assuming that
can occur when eithet > m, or two arrivals with different delays  rankA) = d, we replacea(f) with the signal’s frequency sig-
share the same spatial signature. The SSF algorithm presented inature
the next section overcomes these two drawbacks.

(20)

a(r,wp) = Sv(1) —wpDv(7)

3.2. Signal Subspace Fitting 2 G(r)g(wp) 21)

whereg(w)=[ 1 wp ]*,and
G(r) = [ Sv(r) —-Dv(r) ]
For this case, the MUSIC loss function becomes
g (@) [Re(G"(NE.E;G(r))| gw)
g (w)[Re(G*(7)G(7))]gw)

sinceg(w) is real-valued. The MUSIC criterion in (22) is seen
to be a ratio of quadratic forms ig(w), and thus minimizing

P* V u (7, w) with respect tgg(w) is equivalent to finding, as a func-
-1 ] ) 13) tion of 7, the minimum generalized eigenvalue and associated
eigenvector of the followin@ x 2 matrices:

Re(G*(NELELG(7) Yuuia = AminRE(G™ (NG (7)) Vo

As in the algorithms of [3, 4], the time delays can be found by
viewing Amin a@s a function ofr, and searching for thd deep-
Also, leta be the vector formed from the real part of the diagonal est minima ofAmin (7). The corresponding frequency offsets are
elements of'1», T, and define then calculated using the generalized eigenvector associated with
N T )\min('f_):
@ =Re(T o)) (15) C Yamal(®)
WD, = ———=~
N 711)in,1( k)
p=tr {I‘zzT} . (16) wherewy,,,;,, ; is element of v ;..

The SSF estimates of the delays and frequency/doppler offsets can
be found by minimizing [8, 9, 10]

Vssp(r,w) = tr {TIgE,WE; } | (12)

where the diagonal weightin§V is as defined in (8). As shown
below, the doppler parameters can also be explicitly estimated us-
ing SSF, but only for the case whetle< N/2, which is not a
serious restriction in most cases. Defl@le= [ SV —DV |,

and suppose that < N/2 andC has full column rank. Introduce

Vu(r,w) = (22)

T'=[® -1](CC)" {
and letT';; be thed x d blocks of the matrix

T = |: Fll F12

A ot Wit et
X =C'EsWE;C'" . 14
 Ta ] (14)

; (23)



3.4. ESPRIT

A fast algorithm based on ESPRIT was presented in [1, 2] for es-
timating time delays in cases where the frequency/doppler offset
is zero. Our empirical results indicate that this approach still gives
reasonable time delay estimates even when the frequency offset is
non-zero but small. The fact that the algorithm yields the desired
estimates in closed form (i.e., without search) makes it an attrac-
tive alternative for initializing the SSF and NSF searches.

4. NUMERICAL EXAMPLES

In this section we study how the performance of the estimators
depends on the assumption of a full rank spatial signature ma-
trix. Simulation data was generated using (1) for two multipath
signals § = 2) with time-delaysr = [ 0.5 3 ]7, and DOAs

[ 0° 6 ], where the DOA of the second arrivél,is varied from

0° to 25°. The data was corrupted by spatially and temporally
white circular Gaussian noise with zero mean and standard devia-
tion o. The two columns of the signature matriX, were given by

the array response of a 5-element, half-wavelength spaced ULA.
The signal sequence was chosen to be a unit power raised cosine
function. Here,N = 101 samples are assumed to be taken from
the array. Figure 1(a) compares the estimation errors, calculated
from 500 Monte Carlo simulations, for the first time-delay esti-
mates, and as can be seen from the figure, the NSF, the SSF and
the MUSIC estimates achieve the CRB when the angular differ-
ence is abové5°. Furthermore, itis seen that all of the algorithms
degrade significantly for angular differences lower thanFigure

1(b) compares the rMSE for the first doppler shift estimates with
the corresponding CRB. Here, the NSF and the MUSIC estimates
are found to have a somewhat lower rMSE than the SSF estimates.
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