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ABSTRACT

This paper considers the problem of estimating the time delays and
doppler shifts of a known waveform received via several distinct
paths by an array of antennas. The general maximum likelihood
estimator is presented, and is shown to require a2d-dimensional
non-linear minimization, whered is the number of received signal
reflections. Two alternative solutions based on signal and noise
subspace fitting are proposed, requiring only ad-dimensional min-
imization. In particular, we show how to decouple the required
search into a two-step procedure, where the delays are estimated
and the dopplers solved for explicitly. Initial conditions for the
time delay search can be obtained by applying generalizations of
the MUSIC and ESPRIT algorithms.

1. INTRODUCTION

The problem of using an antenna array to estimate the time de-
lays and doppler shifts (or frequency offsets) of a known signal is
important in two common applications. First, in active radar and
sonar, a known waveform is transmitted and reflections from ob-
jects “illuminated” by the transmission are subsequently received.
The received signals are often modeled as scaled, delayed, and
doppler-shifted versions of the transmitted signal. Estimation of
the signal amplitude, delay, and doppler shift provides informa-
tion about the position and relative motion of the objects. The
second application involves estimation of the parameters of a mul-
tipath communication channel in situations where the transmitter
is rapidly moving or has an unknown frequency offset. For ex-
ample, consider a situation where a remote mobile user transmits
a known waveform (e.g., a training sequence) to a basestation for
synchronization or equalization purposes. If the channel is fre-
quency selective (non-zero delay spread), then the signal will be
received with several distinct delays. In addition, due to the mo-
tion of the mobile and variations in the carrier frequency of the
transmitter, the known signal can also be received with a small fre-
quency offset. Estimation of the delays and frequency offsets, as
well as the spatial signatures of the signal arrivals, is necessary in
establishing a clean, inter-symbol and interference-free communi-
cation link. This paper presents a novel approach to solving the
problems described above. The techniques presented are appli-
cable in situations involving multiple antennas and, unlike classi-
cal methods, are asymptotically optimal at high SNR even when
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multiple overlapping copies of the signal are received. The fre-
quency domain model used in [1, 2] for time-delay estimation is
generalized to incorporate the presence of (small) frequency off-
sets. The resultingsignal manifoldin the frequency domain can
be seen as a generalized version of the signal manifold of [1, 2], in
much the same way that polarization [3, 4, 5] and local scattering
[6] generalize the standardarray manifoldin direction of arrival
(DOA) estimation. This observation motivates the development of
subspace-based techniques similar to those in [4, 5, 6], which pro-
vide closed-form solutions for the linear parameters (in our case,
the frequency/doppler offsets). The resulting algorithms require a
search for the time delays, but it is seen that for small frequency
offsets, the closed-form time-delay estimation techniques of [1, 2]
provide excellent initial conditions.

2. MODELING

Suppose anm-element antenna array receives several scaled, time-
delayed, and frequency/doppler-shifted copies of a known base-
band signal,s(t). The received signals could, for instance, be the
echoes from a pulse transmitted by an active radar, or they could
result from a training sequence sent over a multipath communica-
tion channel. In either case, we may model the output of the array
for small frequency/doppler offsets as

x(t) =
dX

k=1

aks(t� �k)e
j!Dk

t + n(t); (1)

whered represents the number of different multipath signals, and
where the parameters�k; !Dk ; and ak are the time-delay, fre-
quency offset, and spatial signature of thek:th arrival. The additive
noise vector,n(t), is assumed to be a zero mean temporally and
spatially white noise process with covariance�2I. The standard
narrowband assumption is employed here. Note that, for the radar
case, the frequency offset!Dk is a narrowband approximation to
the stretching or shrinking of the frequency axis due to the doppler
effect induced by the relative motion of the reflecting target.

The frequency domain representation of the array output in (1)
is given by

x(!) =

dX
k=1

aks(! � !Dk)e
�j!�k + n(!); (2)

wherex(!), s(!) andn(!) are the Fourier transforms ofx(t),
s(t) andn(t), respectively. Under the assumption that the fre-
quency/doppler offsets are “small”, it is possible to simplify the



dependence of (2) on the doppler frequencies by neglecting the
higher order terms in the Taylor series expansion ofs(! � !Dk) :
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where a total ofN snapshots are collected from the array, and

d(!i) =
@s(!)

@!

����
!=!i

:

Assuming thatx(!) is anm � 1 column vector, the data at fre-
quencies!1; : : : ; !N may be arranged in matrix form as
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A+N

4
= Q(� ;!)A+N ; (4)

where

� = [�1 : : : �d]
T

! = [!D1
: : : !Dd ]

T

A = [a1 � � � ad]
T

S = diag(s)

D = diag(d)

V(� ) = [v(�1) : : : v(�d)]

v(�) = [exp(�j!1�) : : : exp(�j!N� )]
T

�(!) = diag(!)

and where, for example, diag(!) is a diagonal matrix with the ele-
ments of the vector! along its diagonal. The columns ofQ(� ;!)
have the following form:

q(�k; !Dk) = Sv(�k)� !DkDv(�k) :

By interchanging the roles of the samples in time and space, the
delay and doppler estimation problem can be cast into the more
familiar framework of DOA estimation. To see this, compare (4)
with the standard model used in DOA estimation:

X = A(�)S+N; (5)

where� is a vector containing the DOAs of the signals. In (5),
A is a known function of thed parameters in�, andS is usually
treated as an unknown unstructured matrix. On the other hand, in
(4) it is Q that is parameterized andA that is unstructured. In
essence, the roles of time (frequency) and space have thus been
reversed. Instead of the array manifolda(�) in m-space employed

in the DOA model, the delay/doppler model uses a “signal” mani-
fold q(�k; !Dk ) in N -space. A further parallel is drawn in [7] by
comparing (4) with the generalized array manifold that is associ-
ated with polarized antenna arrays [4, 5] and signals with angular
spread [6].

In practice,X is obtained by performing a DFT on the time do-
main data inXt. As such, the translation of time delays into a
linearly increasing phase shifte�j!� does not hold exactly, except
in certain special cases involving, for example, a periodic signal or
a signal with finite time support. However, iftN � t1 � maxk �k
and the signal is sampled at least at the Nyquist rate, then the error
induced by the finite length DFT will be small, and the frequency
domain model will be a reasonable approximation (this is illus-
trated by the simulation results in Section 4).

3. SUBSPACE-BASED ESTIMATION METHODS

In this section we describe algorithms for time delay and fre-
quency/doppler offset estimation based on Noise Subspace Fitting
(NSF) [8, 9], Signal Subspace Fitting (SSF) [8, 10, 9], MUSIC [3]
and ESPRIT [11]. It will be shown that due to the special structure
of the signal manifold in the frequency domain, both NSF and SSF
reduce to ad-dimensional search for the delay parameters. Of the
two, SSF is expected to be more robust when the spatial signature
matrixA is nearly rank-deficient, or when the time-delay differ-
ences are very small [9]. Both methods require initial estimates of
the� parameters, and for this purpose the MUSIC estimator and
an ESPRIT-based estimator are described. The MUSIC estimator
requiresd one-dimensional searches, while the ESPRIT estimator,
which ignores the doppler shifts, does not require any search.

3.1. Noise Subspace Fitting

The NSF loss function for the problem at hand may be written as
[5, 8]

VNSF (� ;!) = tr
n
Q
�(� ;!)ÊnÊ

�
nQ(� ;!)Û

o
; (6)

wheretr f�g denotes the matrix trace,(�)� the conjugate transpose,
(�)y the pseudo inverse, and

Û = Qy(�̂ ; !̂)ÊsWÊ
�
sQ

y�(�̂ ; !̂) ; (7)

�̂ and!̂ are consistent (initial) estimates of� and!,W is a diag-
onal weighting matrix,̂Es is the matrix whose columns are the left
singular vectors corresponding to thed largest singular values of
X, andÊn is aN�(N�d) matrix whose columns are orthogonal
to those ofÊs. The choice of the matrixW depends on whether it
is desired to approximate the so-called deterministic or stochastic
ML solution (see [8, 9] for details). In the simulations presented
later, we use the stochastic ML weighting

W = (�̂s � �̂2I)2�̂�1s ; (8)

where�̂s is a diagonal matrix formed from thed largest squared
singular values ofX, and�̂2 is a consistent estimate of the noise
variance (obtained, for example, as the average of them�d small-
est squared singular values ofX). Introduce

M(� ) =

�
V�D�PDV �V�D�PSV

�V�S�PDV V�S�PSV

�

�

�
ÛT ÛT

ÛT ÛT

�
; (9)



where�(!) =
�
!T eT

�
, e = [1 � � � 1]T is d � 1 and

P = ÊnÊ
�
n. Setting@VNSF=@! = 0 yields

!̂ =M�1
11M12e ; (10)

where the real part of the matrixM(� ) has been partitioned into
d� d blocks:

ReM(� ) =

�
M11 �M12

�M21 M22

�
:

Substituting (10) into the cost function leads to the following cri-
teria for estimating� :

�̂ = argmin
�

e
T
�
M22 �M

T
12M

�1
11M12

�
e ; (11)

which is the sum of the elements of the Schur complement ofM11

in ReM(� ). It is worth mentioning that, since typicallyN � d,
it is advantageous to computeP asP = I � ÊsÊ

�
s rather than

P = ÊnÊ
�
n.

The NSF algorithm is implemented by performing ad-
dimensional search of the criterion in (11). As mentioned above,
consistent initial estimates of� and! are required for computing
the matrixÛ used in the NSF criterion. One way of obtaining
Û would be to first implement the NSF algorithm witĥU = I,
and use the resulting estimates to form the optimalÛ. Setting
Û = I is equivalent to using the MUSIC approach described later
in this section. There are two drawbacks associated with the NSF
algorithm: first, the algorithm is not always able to resolve closely
spaced components in� , and second, the algorithm’s performance
may deteriorate when the rows ofA are linearly dependent, which
can occur when eitherd > m, or two arrivals with different delays
share the same spatial signature. The SSF algorithm presented in
the next section overcomes these two drawbacks.

3.2. Signal Subspace Fitting

The SSF estimates of the delays and frequency/doppler offsets can
be found by minimizing [8, 9, 10]

VSSF (� ;!) = tr
n
�
?
QÊsWÊ

�
s

o
; (12)

where the diagonal weightingW is as defined in (8). As shown
below, the doppler parameters can also be explicitly estimated us-
ing SSF, but only for the case whered < N=2, which is not a
serious restriction in most cases. DefineC =

�
SV �DV

�
;

and suppose thatd < N=2 andC has full column rank. Introduce

T
�1 =

�
� �I

�
(C�C)

�1

�
��

�I

�
; (13)

and let�ij be thed� d blocks of the matrix

� =

�
�11 �12
��12 �22

�
4
= CyÊsWÊ

�
sC

y� : (14)

Also, let� be the vector formed from the real part of the diagonal
elements of�12T̂, and define


 = Re
�
T̂� �T11

�
(15)

� = tr
n
�22T̂

o
: (16)

Then, minimization with respect to! yields the estimate

!̂ = 
�1� : (17)

Inserting (17) into the cost function leads to the following criteria
for estimating� :

�̂ = argmin
�

���
T


�1
�� tr

n
CC

y
ÊsWÊ

�
s

o
: (18)

Note that the computation required to evaluate the SSF criterion
can be significantly simplified by performing the trace calculation
in (18) as

tr
n
CC

y
ÊsWÊ

�
s

o
= tr

n�
C
y
Ês

�
W

�
Ê
�
sC

�o
: (19)

The SSF algorithm is implemented by performing thed-
dimensional search in (18). As with NSF, the SSF method requires
consistent initial estimates of both� and! to form T̂, which
is then used in calculating
 and�. Such estimates can be ob-
tained using either the MUSIC or ESPRIT approaches presented
in the following subsections, or by an initial application of SSF
with T̂ = I.

3.3. MUSIC

In the standard MUSIC algorithm [3] for DOA estimation, the
DOAs are determined to be thed values of� that makea(�) nearly
orthogonal toÊn, according to the following measure:

VM (�) =
a�(�)ÊnÊ

�
na(�)

a�(�)a(�)
: (20)

In the delay and doppler estimation problem, assuming that
rank(A) = d, we replacea(�) with the signal’s frequency sig-
nature

q(�; !D) = Sv(�)� !DDv(� )

4
= G(�)g(!D) ; (21)

whereg(!) =
�
1 !D

�T
, and

G(�) =
�
Sv(�) �Dv(�)

�
:

For this case, the MUSIC loss function becomes

VM (�; !) =
g�(!)

h
Re

�
G�(�)ÊnÊ

�
nG(�)

�i
g(!)

g�(!) [Re(G�(�)G(� ))]g(!)
; (22)

sinceg(!) is real-valued. The MUSIC criterion in (22) is seen
to be a ratio of quadratic forms ing(!), and thus minimizing
VM (�; !) with respect tog(!) is equivalent to finding, as a func-
tion of � , the minimum generalized eigenvalue and associated
eigenvector of the following2� 2 matrices:

Re
�
G
�(�)ÊnÊ

�
nG(� )

�

min

= �minRe(G�(� )G(�))
min

:

As in the algorithms of [3, 4], the time delays can be found by
viewing �min as a function of� , and searching for thed deep-
est minima of�min(�). The corresponding frequency offsets are
then calculated using the generalized eigenvector associated with
�min(�̂):

!̂Dk =

min;2(�̂k)


min;1(�̂k)

; (23)

where
min;i is elementi of 

min
.



3.4. ESPRIT

A fast algorithm based on ESPRIT was presented in [1, 2] for es-
timating time delays in cases where the frequency/doppler offset
is zero. Our empirical results indicate that this approach still gives
reasonable time delay estimates even when the frequency offset is
non-zero but small. The fact that the algorithm yields the desired
estimates in closed form (i.e., without search) makes it an attrac-
tive alternative for initializing the SSF and NSF searches.

4. NUMERICAL EXAMPLES

In this section we study how the performance of the estimators
depends on the assumption of a full rank spatial signature ma-
trix. Simulation data was generated using (1) for two multipath
signals (d = 2) with time-delays� = [ 0:5 3 ]T , and DOAs
[ 0� � ], where the DOA of the second arrival,�, is varied from
0� to 25�. The data was corrupted by spatially and temporally
white circular Gaussian noise with zero mean and standard devia-
tion�. The two columns of the signature matrix,A, were given by
the array response of a 5-element, half-wavelength spaced ULA.
The signal sequence was chosen to be a unit power raised cosine
function. Here,N = 101 samples are assumed to be taken from
the array. Figure 1(a) compares the estimation errors, calculated
from 500 Monte Carlo simulations, for the first time-delay esti-
mates, and as can be seen from the figure, the NSF, the SSF and
the MUSIC estimates achieve the CRB when the angular differ-
ence is above15�. Furthermore, it is seen that all of the algorithms
degrade significantly for angular differences lower than5�. Figure
1(b) compares the rMSE for the first doppler shift estimates with
the corresponding CRB. Here, the NSF and the MUSIC estimates
are found to have a somewhat lower rMSE than the SSF estimates.
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