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ABSTRACT

Vector Quantization (VQ) has been explored in the past as a
means of reducing likelihood computation in speech recognizers
which use hidden Markov models (HMMs) containing Gaussian
output densities. Although this approach has proved successful,
there is an extent beyond which further reduction in likelihood
computation substantially degrades recognitionaccuracy. Since
the components of the VQ frontend are typically designed after
model training is complete, this degradation can be attributed to
the fact that VQ and HMM parameters are notjointly estimated. In
order to restore the accuracy of a recognizer using VQ to aggres-
sively reduce computation, joint estimation is necessary. In this
paper, we propose a technique which couples VQ frontend design
with Minimum Classification Error training. We demonstrate on a
large vocabulary subword task that in certain cases, our joint train-
ing algorithm can reduce the string error rate by 79% compared to
that of VQ mixture selection alone.

1. INTRODUCTION

Current state of the art speech recognizers use continuous den-
sity hidden Markov models (HMMs) to represent acoustic events.
Unfortunately, the intensive nature of the state likelihood calcula-
tions required by such models can limit their use in real-time high
channel density applications. In [1–3], Vector Quantization (VQ)
was explored as a means of reducing the computational cost of us-
ing continuous state output distributions which were represented
by Gaussian mixture densities. The general idea behind using VQ
to reduce computation is the following: If an observation vector
can be assigned to a certain region of the acoustic space via VQ,
those mixtures which are “far away” from this region can be ne-
glected since they will make negligible contributions to subsequent
likelihoods. In speech recognition, VQ is typically implemented
as a frontend consisting of a codebook for quantizing observa-
tion vectors and a neighbor table for identifying which mixtures
are “near” each VQ codevector. Typically, the VQ codebook and
neighbor table are designed offline after the HMM training process
is complete.

In [2], it was found that vector quantization could reduce the
average number of mixture likelihood calculations per frame by
over 70% on a large vocabulary subword task without a significant
loss of accuracy. This result is understandable if we assume that
the mixtures within each HMM state can be clustered into “sub-
states” which represent mutually exclusive acoustic events. Thus,
as long as the VQ frontend permits the mixture likelihood calcu-
lations corresponding to the correct substate for the current pair of

HMM state and VQ index, recognitionaccuracy is not degraded.
However, if the desired reduction in likelihood computation re-
quires mixtureswithin the selected substate to be excluded, recog-
nitionaccuracy will decline. In this sense, some amount of mixture
reduction is typically achievable with minimal performance degra-
dation, and the vector quantizer design can be conducted apart
from the HMM training. However, as the extent of reduction be-
comes aggressive enough to impact this substate level, recognition
accuracy degrades significantly. To restore recognition accuracy,
joint estimation of VQ and HMM parameters is necessary .

In this paper, we introduce an algorithm which couples VQ
frontend design with Minimum Classification Error (MCE) train-
ing. The joint estimation permits the model parameters to be ad-
justed to maximize discrimination between competing HMMs for
a recognizer which is using VQ based mixture selection to reduce
computation. This has the effect of enabling aggressive mixture
selection without significantly reducing accuracy.

The outline of the rest of the paper is as follows. In Section 2,
we review some of the fundamentals of vector quantization and
how they apply to Gaussian mixture selection. In Section 3, we
describe how our algorithm couples VQ mixture selection with
MCE training, while in Section 4, we discuss how the MCE al-
gorithm is modified to enable joint estimation. In Section 5, we
present experimental evidence on a large vocabulary subword task
demonstrating that the string accuracy of a recognizer using VQ
based Gaussian mixture selection can be improved significantly
through joint VQ/MCE training. In Section 6, we conclude.

2. VQ BASED GAUSSIAN MIXTURE SELECTION

Consider a vector of HMM parameters,�, corresponding to
a model set containing a total ofS unique states andM unique
mixture densities. LetMs denote the set of indices for the mixture
components within states andN (� ; �m;�

2
m) represent a Gaus-

sian density with mean�m and variance�2
m (we assume diagonal

covariance matrices throughout). The likelihood of observing vec-
torx given states can then be expressed as

ls(x) =
X

m2Ms

cm N (x ; �m;�
2
m) (1)

where
P

m2Ms
cm = 1.

We wish to design a VQ frontend consisting of a size-N code-
book,CN , and aN �M neighbor table,TN;M . During recogni-
tion, CN is used to provide a quantization index,i, for each ob-
servation vector,x, while TN;M mapsi to a set of non-negligible
mixtures which are needed for state likelihoods involvingx. To



designCN , we adopt the approach introduced in [1]. Define as
distance measure

�(x;y) =
1

d

dX
j=1

(x(j)� y(j))2

w(j)
(2)

wherex andy ared-dimensional vectors andw(j) is the average
of thejth variance component over all�2

m. With this notation,

CN = fyi : i = 1; : : : ;Ng (3)

is designed by clustering the vectors�m 2 � in an unsupervised
manner with� as distance measure.

For the design ofTN;M , we use the variable threshold tech-
nique introduced in [2]. Recall that we do not wish to calculate
mixture likelihoods that will have negligible effects on their re-
spective state likelihoods. Thus, we define a maximum distance,
�i, that a mixture mean may lie from a VQ codeword before being
considered negligible in likelihood calculations involving observa-
tion vectors quantized into celli. More specifically, ifQ denotes
the quantization function andQ(x) = i, N (� ; �m;�

2
m) will be

considered negligible in terms ofls(x) if

�(yi;�m) > �i wherem 2Ms: (4)

With this notation, an entry in the neighbor table is defined as

TN;M (i;m) =

(
0 if �(yi;�m) > �i;

1 if �(yi;�m) � �i;
(5)

wherei = 1; 2; : : : ;N andm = 1; 2; : : : ;M . OnceTN;M has
been populated, the reduced mixture approximation tols(x) can
be formulated as

l̂s(x) =
X

m2Ms

TN;M (i; m) cm N (x ; �m;�
2
m) (6)

whereQ(x) = i. AssumingN is large enough andCN is well
designed, careful choice of each�i should ensurêls(x) � ls(x)
for all x.

3. JOINT ESTIMATION OF VQ AND HMM
PARAMETERS USING MCE TRAINING

Our algorithm proceeds in an iterative fashion by alternately
designingfCN ; TN;M g for a given�, and then optimizing� for
that fCN ; TN;M g. More specifically, we initialize the process
with a boot model,�(0), that has been discriminatively trained
with full likelihood computation permitted. After using�(0) to
designfC(0)

N ; T
(0)
N;M g as described in Section 2,�(0) is then ad-

justed using the modified MCE algorithm described in the next
section in order to reduce classification error of the recognizer
when using VQ based Gaussian mixture selection. We denote this
improved model set as�(1). Since the VQ codebook is created
from the HMM parameters, a new (more optimal) VQ codebook
and neighbor table,fC(1)

N ; T
(1)
N;M g, is then designed corresponding

to �(1). This entire procedure is repeated until the performance
degradation introduced by VQ based Gaussian mixture selection
is minimized. Figure 1 depicts this relationship. Thus, our itera-
tive algorithm is composed of the following two steps: (1) design
fCN ; TN;Mg given� and (2) improve the reduced mixture per-
formance of� givenfCN ; TN;M g.

TN,M

CN

Design VQ Codebook
and Neighbor Table

speech
training
data

Improve Reduced Mixture
Recognition Accuracy

Adjust HMM Parameters to

Λ

Figure 1: Illustration of the joint VQ/MCE training algorithm.

4. MODIFIED MCE TRAINING FOR IMPROVING �

GIVEN fCN ; TN;M g

Having already detailed how to designfCN ; TN;Mg given�
in Section 2, we now proceed to discuss our modification of the
MCE training algorithm. Given a vector of HMM parameters,�,
and its corresponding VQ frontend,fCN ; TN;M g, we wish to in-
crease the discrimination between competing models for a recog-
nizer which is using VQ based Gaussian mixture selection. In [4],
the MCE training algorithm was introduced. The algorithm uses
a smoothed approximation to the classification error count which
enables gradient descent methods to operate. We need to modify
its implementation slightly so that the algorithm can operate upon
our reduced mixture recognizer.

To summarize the development in [4], letW be an arbitrary
word string composed by concatenating models from�. If X
is a finite sequence of observation vectors, we denote the log-
likelihood score ofX along its optimal path through the models
composingW asg(X;W;�). The topN string hypotheses can
be defined inductively as

W1 = argmax
W

g(X;W;�) ; (7)

Wk = argmax
W 6=W1;::: ;Wk�1

g(X;W;�) : (8)

If Nbest is the number ofN -best string hypotheses provided by
the recognizer, the misclassification measure proposed in [4] can
then be defined as

d(X;�) = �g(X;Wlex;�)

+ log

2
4 1

Nbest� 1

X
Wk 6=Wlex

e
g(X;Wk;�)�

3
5

1

�

(9)

where� is a positive number, andWlex is the correct string. A
misclassification error is indicated byd(X;�)� 0. This misclas-
sification measure is then embedded in a smoothed loss function



defined as

l(X;�) =
1

1 + e�d(X;�)
(10)

where is positive. The MCE algorithm proceeds by adjusting�
according to the gradient of the loss function,rl(X;�) [4].

In order for the MCE algorithm to reduce classification error
for a recognizer using Gaussian mixture selection,g(X;Wlex;�)
andg(X;Wk;�) in (9) need to be replaced by the optimal log-
likelihood scores ofX along paths within the reduced mixture rep-
resentations ofWlex andWk . This implies thatfCN ; TN;M gmust
be used when scoringX for eachW . We denote these approxima-
tions to the actual likelihoods aŝg(X;Wlex;�) andĝ(X;Wk;�),
respectively. However, use of̂g(X;Wlex;�) and ĝ(X;Wk;�)
in (9) alters the update formulas of the various model parameters
throughrl(X;�). Our new update formulas are related to the
established ones through the partial derivatives

@ l̂s(x)

@�m

= TN;M (i;m)
@ ls(x)

@�m

; (11)

@ l̂s(x)

@ ��2
m

= TN;M (i;m)
@ ls(x)

@ ��2
m

; (12)

@ l̂s(x)

@�cm
= cmf TN;M (i; m)N (x ; �m;�

2
m)� ls(x) g

(13)

whereQ(x) = i and��2
m and�cm are related to the original HMM

parameters through the following equations:

�
2
m = e

��2m ; (14)

cm =
e�cmP

m2Ms
e�cm

: (15)

The update formula for transition probabilities is not affected by
VQ mixture selection.

5. EXPERIMENTAL RESULTS

In this section we will demonstrate how our joint VQ/MCE
training algorithm can restore much of the recognition performance
lost through aggressive VQ based Gaussian mixture selection. We
also investigate the empirical rate of convergence of our training
technique. We consider the task of speaker independent subword
based large vocabulary recognition. The recognizer lexicon con-
sisted of 6963 company names whose lexical representations were
obtained from either dictionary lookup or a text-to-speech fron-
tend. The average phoneme length for a company name was 18.9,
and the average word length was 3.7. The testing database con-
sisted of 3913 utterances from 843 speakers collected over the U.S.
telephone network. The model set for this task consisted of 41 con-
text independent subword HMMs, one of which represented si-
lence. All non-silence HMMs were 3 state with 16 Gaussian mix-
tures while the silence HMM was 1 state with 32 Gaussian mix-
tures. The initial model set,�(0), was built using standard MCE
training (i.e., with full likelihood computation) on a database con-
sisting of 9865 phonetically balanced sentences and phrases. The
feature vector for the task consisted of the following 39 parame-
ters: 12 LPC derived cepstral coefficients, 12 delta cepstral coeffi-
cients, 12 delta-delta cepstral coefficients, normalized log energy,
delta log energy, and delta-delta log energy.
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Figure 2: Percent string accuracy versus mixture fraction for a rec-
ognizer using�(0) and�(5)

F .

In our experiments, we considered 3 different levels of mixture
reduction in order to vary the extent of degradation caused by VQ.
The level of mixture reduction is indicated by the mixture fraction
which we define as

F =
total # mixture likelihoods computed with VQ

total # mixture likelihoods computed without VQ (16)

where the totals in (16) are computed over all strings in the test set.
At each value ofF , we performed 5 iterations of joint VQ/MCE
training using the same phonetically balanced training database
described earlier. This provided us with 15 new model sets,�

(j)
F ,

wherej = 1; 2; : : : ; 5 refers to the training iteration and the sub-
scriptF identifies the targeted mixture fraction. During our mod-
ified MCE adjustment of�(j)

F , fC(j)
N ; T

(j)
N;M g was updated every

20 strings to assure convergence. Therefore, we now take iteration
to mean a complete pass through all 9865 training strings, not a
single cycle through Figure 1 (i.e., a single iteration now repre-
sents 493 cylces through Figure 1). In all cases, a size-128 VQ
codebook was used. In our results, we will compare string accu-
racy after each VQ/MCE iteration to that achieved by�(0) with
VQ based Gaussian mixture selection. (Note that�

(0) does not
have a subscriptF since the boot model does not vary with mix-
ture fraction.)

5.1. Improvement in String Accuracy

In this section, we demonstrate how joint VQ/MCE training
can significantly improve the accuracy of a recognizer which is
using VQ based Gaussian mixture selection. The 3 mixture frac-
tions we considered correspond to selecting approximately 1, 2,
and 4 non-silence mixtures per state. Figure 2 presents the string
accuracies at each of these mixture fractions for a recognizer us-
ing�(0) and�(5)

F . As expected, the string accuracy attainable by
�

(0) decreasesas likelihood computation is reduced, but beneath a
mixture fraction of approximately 0.1, accuracy falls significantly
to 46.9%. Clearly, atF = 0:07, the extent of mixture reduction
is so aggressive that non-negligible mixtures are being discarded.
At this lowest mixture fraction, we find that our joint VQ/MCE
training is able to reduce the string error rate by 79% and increase
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Figure 3: Percent string accuracy versus joint VQ/MCE iteration
for various mixture fractions.

string accuracy from 46.9% to 89.0%. At the other 2 mixture frac-
tions, our technique increases accuracy from 87.8% to 92.3% and
from 90.7% to 93.7%. Since�(0) with full likelihood computa-
tion attains an accuracy of 93.0%, we find that our technique is
indeed able to remove most of the degradation introduced by VQ
based Gaussian mixture selection. (The data point atF = 1:0 in
Figure 2 represents the accuracy attainable using�

(0) with full
likelihood computation.)

5.2. Empirical Rate of Convergence

Since our training algorithm is iterative in nature, it is useful to
investigate its empirical rate of convergence. To accomplish this,
we plot the string accuracy versus VQ/MCE iteration at the 3 mix-
ture fractions previously considered. The curves in Figure 3 are
labeled according to their targeted value of mixture fraction. We
see that in all 3 cases, the majority of the degradation introduced
by VQ based Gaussian mixture selection is removed with just 3 it-
erations of the proposed VQ/MCE training technique. Thus, if the
training database for the selected task is extensive, our algorithm
will impose very little overhead in design time.

6. CONCLUSION

Although vector quantization offers a valuable means of re-
ducing likelihood computation, we showed that aggressive VQ
based Gaussian mixture selection can degrade recognitionaccu-
racy significantly. This loss of accuracy can be attributed to the
fact that the VQ frontend is designed after the HMM training is
complete. In this paper, we have proposed a training technique
which jointly estimates the VQ and HMM parameters using MCE
training. We provided experimental evidence on a large vocabu-
lary subword task that demonstrated that our technique was able
to remove most of the degradation introduced by VQ mixture re-
duction at the aggressive mixture fractions we considered. Fur-
thermore, we demonstrated that our joint VQ/MCE training had a
rapid empirical rate of convergence so that only a few iterations
were needed to achieve substantial improvements in accuracy.
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