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ABSTRACT

A subband coder structure is fully optimized with respect to
the minimum block mean squared error between the output
and the input signals under a bit constraint. The analysis
�lter bank structure generates maximally decimated and
equal bandwidth subbands. The subband quantizers are
modeled as additive noise sources. To simplify the opti-
mization an optimal multiple-input multiple-output system
is �rst derived. Illustrative examples showing the system
performance as well as �lter transfer functions are given.
The performance results are compared to the rate distor-
tion curves.

1. INTRODUCTION

The optimization of low-rate subband coders su�ers from
two de�ciencies. Firstly, the commonly used model for the
quantizer is not strictly valid. Secondly, when the quantizer
noise becomes su�ciently high, the perfect reconstruction
property often assigned to the �lter banks, is not longer
optimal. Some e�orts have been undertaken to overcome
these obstacles.

A simple improvement of the quantizer model results
when assuming that it does not only add noise to the sig-
nal, but also modi�es the signal strength [1]. More accurate
results can be obtained by using the true performance curve
of the quantizer. Even that is not su�cient at low rates,
because the assumption that the noise and signal are uncor-
related is far from exact. The traditional quantizer model
will be used here even though this is not consistent with
our low rate assumption.

What we address here is a joint optimization of the
analysis and synthesis �lter banks, for all rates, assuming
the simple quantizer model is valid. A further re�nement
would result if more advanced quantizer models were ap-
plied. Some of the earlier works in this �eld include [2],
where a unitary �lter bank with perfect reconstruction is
employed, and combined with pre- and post-�lters, in [3]
the analysis �lters are kept constant while optimizing the
bit allocation and the synthesis �lters, and [4], where the
total noise is minimized while maintaining perfect recon-
struction through the use of inverse �lters in the analysis
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and synthesis �lter banks. In this paper we relax all the
constraints from the cited articles, and minimize the over-
all output noise when the number of available bits is con-
strained.

The only model constraint adhered to in this paper is
that all the subband channels occupy the same bandwidth
and that the passband to baseband modulation in the anal-
ysis �lter bank is obtained by integer factor decimation.
The last requirement is enforced from an implementation
point of view, although the results cited in this paper will
be purely theoretical and give an upper bound for the per-
formance of the system considered. The loss by using prac-
tical �lters and a more realistic quantizer model are topics
for an upcoming article.

2. PROBLEM FORMULATION

The system considered in this article is the subband coder
model shown in Figure 1.
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Figure 1: The subband coder considered.

The �lter banks are implemented in polyphase form and
the quantizers are replaced by additive noise sources.

Since the output of the subband coder system shown in
Figure 1 is cyclostationary [5], it is di�cult to analyze. By
studying a corresponding vector system instead, the prob-
lem will become more manageable. The vector system is
shown in Figure 2.
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Figure 2: A block version of the subband coder.

The vector system's input signal a(l), is obtained by
multiplexing the input time series a(l) into

a(l) = [a(lN); a(lN � 1); : : : ; a(lN � (N � 1))]T : (1)

The subband signals in Figure 2 are represented by the
M -ary vector x(l) = [x0(l); x1(l); : : : ; xM�1(l)]

T given by

x(l) = s(l) � a(l); (2)

where � is the convolution operator and s(l) is the impulse
response matrix of the analysis polyphase �lter bank.

The quantizers are modeled as additive noise sources
expressed in the following noise vector:

n(l) = [n0(l); n1(l); : : : ; nM�1(l)]
T : (3)

The further assumptions made are the following: The
vector time series a(l) and n(l) represent jointly wide sense
stationary (WSS) vector series [5], which are mutually un-
correlated and have zero mean. The �lters are linear, and
are allowed to be non-causal with in�nite impulse responses.

The partial statistical description of the signals a(l)
and n(l) used here are given by the following power spectral
density (PSD) matrices, respectively:

�a(f) =
X
m

E
h
a(l +m)aH(l)

i
e�j2�fm;

�n(f) =
X
m

E
h
n(l +m)nH(l)

i
e�j2�fm: (4)

By using the inverse Fourier transform of the PSD matri-
ces in Equation (4), the matrices E

�
a(l+m)aH(l)

�
and

E
�
n(l +m)nH(l)

�
can be obtained. For high rates it is

assumed that the quantizer noise can be modeled as white
additive noise, and quantizer noise in one channel is un-
correlated with noise in all the other channels [6]. There-
fore �n(f) is a diagonal matrix.

The Block mean squared error (MSE), used as the op-
timization criterion, is de�ned as

�N;M () = tr
�
E
h
e(l)eH(l)

i�
; (5)

where H, tr(�), and E [�] are the Hermitian, trace, and ex-
pectation operators, respectively. Furthermore, e(l) is the

error vector between the input and output vectors in Fig-
ure 2 given by

e(l) =â(l)� a(l)

=
1X

m=�1

w(l �m)a(m)� a(l)

+
1X

p=�1

r(l � p)n(p); (6)

where w(l) is the impulse response matrix for the total
system given by

w(l) = r(l) � s(l): (7)

Inserting w(l) and e(l) from Equations (7) and (6), re-
spectively, into Equation (5), followed by manipulations,
the following expression for the MSE described in the fre-
quency domain is obtained:

�N;M () = tr

 Z 1

2

� 1

2

f [I �R(f)S(f)]�a(f)�

[I �R(f)S(f)]H

+R(f)�n(f)R
H(f)

o
df

�
: (8)

S(f) and R(f) are the Fourier transform of the polyphase
analysis and synthesis impulse response matrices, respec-
tively.

The high rate assumptions allows the variance of the
noise of quantizer number i, �2ni , to be modeled as

�2ni = �2xihi2
�2Bi ; (9)

where �2xi is the variance of subband signal number i 2
f0; 1; : : : ;M � 1g (see Figure 2), Bi is the number of bits
used in quantizer number i, and hi is the quantizer perfor-
mance factor [1]. Inversion of Equation (9), while asserting
a non-negative bit count, gives

Bi = max

�
0;

1

2 ln 2
ln

�
hi�

2
xi

�2ni

��
: (10)

From Equation (10) it is seen that the rate in quantizer
number i is only dependent of the ratio between �2xi and

�2ni . Therefore the values of �
2
ni can be chosen to an arbi-

trary value without loss of generality. By choosing the value
of the quantizer noise variances equal to one, the �lters will
adjust to an appropriate value to give the minimum MSE
overall performance. The optimal number of bits used in the
quantizers will therefore be implicitly distributed through
the system optimization.

It can be shown that the bit constraint can be expressed
as

Pr

 Z 1

2

� 1

2

S(f)�a(f)S
H(f)df

!
� B �

M�1Y
i=0

�2ni
hi

= B0;

(11)



where the operator Pr multiply the elements of the main

diagonal of the matrix, and B =
M�1X
i=0

Bi is the total number

of bits used on N source samples by the M quantizers. In
Equation (11) the constant B0 is also de�ned.

�N;M () is a monotonic non-increasing function of the
total number of bits used, B, which can be found through
Equation (11). Therefore the constraint is assumed to be
satis�ed with equality without loss of generality. It is as-
sumed that it is possible to use any positive real number of
bits in the quantizers.

3. PROBLEM SOLUTION
The objective is to minimize the MSE given by Equation (8)
subject to the bit constraint given by Equation (11) with
respect to S(f) and R(f). It is not enough space to give the
derivation of the optimal solution, so it will just be stated.
A complete derivation will be presented in an future article.

The optimal transmitter and receiver matrices are given
by

S(f) = V (f)F (f)UH(f);

R(f) = U(f)G(f)V H(f)��1
n (f): (12)

U(f) and V (f) are unitary matrices which diagonalize the
input PSD matrix �a(f) and the Hermitian matrix ��1

n (f),
respectively, i.e.,

�a(f)U(f) = U(f)Ka(f);

�
�1
n (f)V (f) = V (f)��1

n (f): (13)

In Equation (13),Ka(f) and �
�1
n (f) are diagonal matrices

that contain the eigenvalues of �a(f) and �
�1
n (f), respec-

tively. In addition the elements of Ka(f) and �n(f) are
ordered as follows:

�
(N)
0 (f) � �

(N)
1 (f) � � � � � �

(N)
N�1(f);

�
(M)
0 (f) � �

(M)
1 (f) � � � � � �

(M)
M�1(f): (14)

The matrix F (f) is an M �N diagonal matrix where the
magnitude of the diagonal elements are given by the square
root of

jFi;i(f)j
2 =max

0
@0; �i

vuut �
(M)
i (f)

��
(N)
i (f)

�
�
(M)
i (f)

�
(N)
i (f)

1
A ;

i 2 f0; 1; : : : ;min(M;N)� 1g ; (15)

where � is a Lagrange multiplier for the constrained opti-
mization problem, and �i is a scaling factor which can be
found by solving the following implicit equation:

�i =

vuuutZ 1

2

� 1

2

max

2
40; �i

s
�
(M)
i (f)�(N)

i (f)

�
� �

(M)
i (f)

3
5

i 2 f0; 1; : : : ;min(M;N)� 1]g: (16)

The phase of the elements in F (f), see Equation (15),
can be chosen arbitrarily.

The matrix G(f) in Equation (12) can be expressed by

G(f) =Ka(f)F
H(f) �h

F (f)Ka(f)F
H(f) +�n(f)

i�1

�n(f): (17)

The performance of the optimal system measured by
block MSE, see Equation (5), is found to be

�N;M () =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Z 1

2

� 1

2

N�1X
i=0

�
(N)
i (f)�(M)

i (f)

jFi;i(f)j2�
(N)
i (f) + �

(M)
i (f)

df;

if M � N;Z 1

2

� 1

2

M�1X
i=0

�
(N)
i (f)�(M)

i (f)

jFi;i(f)j2�
(N)
i (f) + �

(M)
i (f)

df

+

Z 1

2

� 1

2

N�1X
i=M

�
(N)
i (f)df;

if M < N:

(18)

The constraint on bit per vector used can be expressed in
the following way:

min(M;N)�1X
i=0

ln

Z 1

2

� 1

2

jFi;i(f)j
2�

(N)
i (f)df � B0; (19)

where B0 is the constant de�ned in Equation (11).
For a given target bit-rate B in Equation (19), the ob-

jective is to �nd the Lagrangian multiplier �, given implic-
itly through Equations (15) and (16), for equality in Equa-
tion (19). This value of � is then inserted in Equation (18)
to calculate the block MSE.

4. ILLUSTRATIVE EXAMPLES
As an example consider the case where the �lter bank is
maximally decimated, i.e., N = 2 / M = 2. The source
which is coded is a Gaussian AR(3)-process for which the
power spectral density is given in Figure 3 (a).

By using the noble identities the decimators in Figure 1
can be moved behind the polyphase matrix on the transmit-
ter side. The frequency responses of the �lters can then be
found by taking the delay chain in front of the polyphase
matrix into account. Notice from Figure 3 (b) that both
�lters extract two frequency bands. In parts (b) and (c) of
the �gures it is seen that only one of the �lters is di�erent
from zero at any frequency. It can be shown that there
will be no overlap in the frequency domain after the �lters
have been decimated. From Figure 3 (d) it is seen that the
optimal �lter banks do not have the perfect reconstruction
property. The phase of the analysis �lters is arbitrary and
therefore can chosen to be linear. Then the synthesis �lters
will also have linear phase. It is also observed from the �g-
ure that in frequency intervals where the input signal has
low energy no signal is sent through the system.

Figure 4 depicts the calculated block MSE (in dB) for
the system with N = 3 as a function of rate when 3, 2 or
1 of the bands are quantized. From this �gure it is seen
that as the bit-rate is decreased the number of channels
should be reduced. For example at 0.5 bit/sample only one
�lter should be used. In Figure 4 the performance of N =
3 /M = 3 will be the same as for the N = 3 /M = 2 case for
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Figure 3: System example using N = 2 / M = 2. (a) PSD
of the input signal. (b) Frequency response of the �rst chan-
nel on the transmitter side. (c) Frequency response of the
second channel on the transmitter side. (d) Total frequency
response through the system. In the last three plots ({ � { � {
) gives the result with B=N = 3:28 bits/sample, and SNR
= 18.4 dB, while (� � � � � � ) shows the result with B=N =
1:12 bits/sample, and SNR = 7.51 dB.

rates below 1.3 bits/sample, and as N = 3 /M = 1 below
0.6 bits/sample. The reason for not showing all curves for
all rates is that the quantizer model only is valid for high
rates. The results which are obtained in the missing rate
regions are very inaccurate because the assumptions made
are not valid in these regions.

The high rate quantizer model underestimates the ac-
tual performance at high rates while at low rates the results
give too good performance [1].

5. CONCLUSIONS

A jointly optimal analysis and synthesis �lter bank and bit
allocation is developed. The results show that the �lter
banks strongly depend on the power spectral density of
the signal which is coded. The traditional way of using
bandpass �lters in each channel with only one contiguous
passband in each subband is suboptimal for some PSDs.
From the theory developed in this article it is seen that
the frequency response of one �lter of the minimum block
MSE �lter banks may have more than one passband. An-
other implication of the theory presented, is that when
over-complete bases are considered with a linear system,
i.e., M > N , M �N of the �lters will be set to zero. With
the assumption made in this article there is nothing to gain
by using over-complete bases. With bandwidth reduction,
i.e. M < N , the performance of the linear system will be

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

(a)

(b)

(c)

Bitrate [bit/sample]

S
N

R
 [d

B
]

Figure 4: Performance of the system using N = 3 / M =
3 (a), N = 3 / M = 2 (b), and N = 3 / M = 1 (c). The
PSD of the source to be coded is shown in Figure 3 (a).
The upper curve is the rate distortion function.

poor for high rates because perfect reconstruction is im-
possible when not full ranked matrices are used in linear
systems. But by constraining the number of subbands to
be less than the decimating factor the complexity of the
system is reduced, and at low bit-rates the performance is
the same as using N = M , because some of the quantizers
are allocated zero bits anyway.
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