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ABSTRACT

As a typical example of sound-mixture recognition, the recog-
nition of ensemble music is addressed. Here music recog-
nition is de�ned as recognizing the pitch and the name of
an instrument for each musical note in monaural or stereo
recordings of real music performances. The �rst key part of
the proposed method is adaptive template matching that
can cope with variability in musical sounds. This is em-
ployed in the hypothesis-generation stage. The second key
part of the proposed method is musical context integration
based on the probabilistic networks. This is employed in the
hypothesis-veri�cation stage. The evaluation results clearly
show the advantages of these two processes.

1. INTRODUCTION

We have been addressing the music recognition task for real
musical performances. Here music recognition is de�ned as
the problem of recognizing the pitch and the name of an
instrument for each musical note in a monaural or a stereo
recording of a real music performance. It is expected that
this music recognition technique will be applicable to au-
tomatic music transcription systems, signal-to-MIDI (Mu-
sical Instrument Digital Interface) conversion systems, and
music-database indexing systems.

The approach towards the music recognition problem
has had a long history. The early work inspired by frequency-
analysis techniques concerns the transcription of a single-
pitched melody such as a vocal solo[7, 5]. Later, recogni-
tion systems for multiple-pitched music performed by a sin-
gle musical instrument (e.g. piano solos) were proposed[4].
However, few works have addressed the recognition of multiple-
pitched music performed by multiple kinds of musical in-
struments (e.g. such as by a chamber ensemble), although
several attempts can be found in the literature[1, 2].

In music signals, most frequency components that orig-
inate in di�erent musical notes overlap. This results in an
intrinsic ambiguity in the interpretation of input signals. In
addition, the identi�cation of musical instruments becomes
an essential issue in the multiple-instrument case. Speci�-
cally, when the input music is a real recording rather than
a sampler1 performance[3], then the identi�cation based on
the conventional methods such as the discriminant analy-
sis or the template matching becomes di�cult due to the

1A sampler is an electronic musical instrument that stores
waveforms of real instruments on memory and playbacks them
on receiving MIDI data from a computer.
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Figure 1: The overview of the proposed processing.

feature variability for each note. As a solution to these tech-
nical problems, two processing stages are proposed in this
paper.

This paper is organized along the processing scheme
presented in Figure 1. After a brief remark on the pre pro-
cessing in Section 2, two processing stages mentioned above
are described in Sections 3 and 4, respectively. The �rst
processing called adaptive template matching is invented
to cope with the variability of each musical note. The sec-
ond processing called the music stream network method
is designed to improve recognition accuracy by integrating
musical context. Evaluations for these two methods are dis-
cussed in Section 5, followed by a concluding remark given
in Section 6.

2. PREPROCESSING

As explained in the following section, the proposed adap-
tive template matching requires an average fundamental
frequency for each note. Thus fundamental frequency ex-
traction is �rst performed on the input signal as a prepro-
cessing.

Since the input may include the unknown number of
musical notes, it is not straightforward to extract all the
fundamental frequencies; one cannot realize this extraction
without prior knowledge on features of notes that may be
included in the input. The extraction here is based on
a gross matching between the input spectral pattern and
those of many notes stored in a database. According to
the preliminary experiments using three-part real ensemble
performances, it is shown that both the \precision" (propor-
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Figure 2: Block diagram of the adaptive template matching.

tion of correctly extracted notes in all the extracted notes)
and the \recall" (proportion of correctly extracted notes in
all the input notes) are approximately 80 % in the current
implementation.

3. ADAPTIVE TEMPLATE MATCHING

The basic idea of the template matching here involves the
matched �lter. As widely accepted, a matched �lter in
the time-domain is a powerful tool to identify the signal
of a speci�c sound in a mixture. In our scheme, a bank
of matched �lters is arranged in parallel. Each template
corresponds to a musical note played by a speci�c kind of
instrument with a speci�c musical pitch (e.g. Piano-C4,
Piano-D4, � � �). Then, by calculating correlation between
the output from each �lter and the input signal, a speci�c
sound source is detected.

In this scheme, adaptation of templates is important,
because the waveforms from musical notes in real perfor-
mances di�er signi�cantly according to the individual in-
strument, the expression such as vibrato, and the player.
Therefore we have devised the adaptive template matching
method as shown in Figure 2. The method consists of two
stages: (1) phase tracking and (2) template �ltering by FIR
adaptive �lters.

3.1. Phase Tracking

The �rst step of template adaptation is phase �ltering.
Phase tracking absorbs the phase 
uctuations of the fun-
damental frequency components.

If the input signal is not a mixture of multiple sounds
but a single sound, adaptive pitch tracking methods as dis-
cussed in the literature can be used. However, such signal
processing methods are not directly applicable to a sound
mixture where multiple pitches are present. Thus we have
developed a simple algorithm to realize the phase adapta-
tion. The algorithm consists of the following six steps.

(1) At the pre-processing stage, perform frequency analy-
sis on the input z, to extract the fundamental-frequency
components. Because z may be a mixture of multiple
sound signals, there may be multiple fundamental-
frequency components.

(2) For each fundamental frequency component, choose
ri. Each ri is a template of a possible sound included
in z.

(3) Apply a narrow-band bandpass �lter to ri, using the
average fundamental frequency of each ri as the band-
pass-�lter center frequency. For each time sample,
store the phase of the output waveform of the band-
pass �lter. Let pr;i(k) denote the phase at time k.

(4) Apply the same bandpass �lter, as applied to ri, to
the input z, and store the phase information for each
fundamental frequency as pz;i(k).

(5) Calculate the required time shift �kr;i(k). Since the
phase di�erence �pr;i(k) is given as:

�pr;i(k) = pz;i(k)� pr;i(k) ; (1)

the time shift �kr;i(k) is calculated by:

�kr;i(k) =
fs

2�fc;i
�pr;i(k); (2)

where fs is the sampling frequency and fc;i is the
center frequency of the applied bandpass �lter.

(6) The amplitude value ri at time k is given as:

ri(k) = ri( k ��kr;i(k) ): (3)

3.2. Template Filtering

The second step of template adaptation is template �lter-
ing. Template �ltering absorbs the 
uctuation in the ampli-
tude of the fundamental frequency components, and both
the amplitude and phases of the overtones.

We consider representing an input acoustic signal z(k)
with a sum of template waveforms, each of which is given
by the convolution of the �lter coe�cients hn(m) and the
phase-adjusted waveform rn(k). Then our problem can be
formulated as the minimization of J in the equation:

J = E

"(
z(k)�

N�1X
n=0

M�1X
m=0

hn(m) rn(k �m)

)2#
; (4)

where k is the time sample, n enumerates the templates,
N is the estimated number of sound sources (which is not
prede�ned), M is impulse response length of the �lters, and
E denotes an average over time.

The necessary condition for J to hold the minimum
value over hn(m) is that the values of the partial derivative
@J=@hn(m) are 0 for all n and m. Using this condition,
it is straightforward to derive N �M simultaneous linear
equations as follows:

N�1X
n=0

M�1X
m=0

E [ri(k � j) rn(k �m)] hn(m)

= E [ri(k �m) z(k)] ; (5)

where i = f0; 1; � � � ; N � 1g and j = f0; 1; � � � ;M � 1g. By
solving this equation, the optimal �lter coe�cients hn(m)
are obtained. The computation required in solving Equa-
tion 5 is third order with respect to M and N .



4. MUSICAL CONTEXT INTEGRATION

4.1. Creating Music Stream Networks

While the above described method absorbs the musical note

uctuations, the method uses only local information and
the matching results can still be ambiguous. Thus, in our
scheme shown in Figure 1, the output from adaptive tem-
plate matching is treated as hypotheses rather than �nal
results, and a hypothesis veri�cation method is employed
to integrate musical context.

The hypothesis veri�cation method is based on \music
stream networks (MSN)". The MSN is a Bayesian prob-
abilistic network that represents the stream of a melody.
The network is constructed as shown in Figure 3. Let us
consider two musical notes nk; nk�1 (k denotes the order
of the onset times of these notes, nk�1 precedes nk). We
de�ne Z(nk; nk�1) using Equation (6):

Z(nk; nk�1) = W
X
i

n
� wi logPi(nk; nk�1)

o
; (6)

where i is a su�x that enumerates the factor of Z, Pi is
a conditional probability of the occurrence of the nk�1 to
nk transition in a given musical context, and wi (> 0) is
a weight for each factor. Since the component � logPi is
self-information delivered by the transition from nk�1 to
nk, Z can be viewed as a weighted sum of self-information.
Thus Z re
ects the infrequency of the transition for these
two notes. Therefore we de�ne the \music stream" as the
sequence of musical notes that gives a locally minimum Z.

The term W is a time window that is de�ned as:

W (�t) = exp
�
�t

�

�
; (7)

where �t is the di�erence between onset times for these
two notes, and � is a time constant. Unlike ordinary time
windows, W becomes greater as �t increases.

Currently the following three factors of Z have been
considered: (1) the transition of musical intervals, (2) the
similarity of timbres, and (3) the consistency of musical
roles.

Firstly, the pitch transition probability in a melody can
be used as P1 in Equation (6). To obtain P1, we analyzed
397 melodies extracted from 196 pop scores and 201 jazz
scores, and calculated the probabilities of musical intervals.
The number of note transitions was 62,689.

Secondly, it is reasonable to suppose that a sequence
of notes tends to be composed of notes that have similar
timbres. To incorporate this tendency, we de�ne a distance
measure between the timbres for two notes. We then esti-
mate the probability that two notes a given distance apart
sequentially appear in a music stream. This probability is
used as P2 in Equation (6). The distance between timbres
is de�ned as the Euclidean distance between the timbre
vectors. A timbre vector is a vector whose elements are the
correlation values between the output from the template �l-
ters and the corresponding portion of the input signal. The
distances between successive notes in a sequence are trans-
lated into probabilities using a histogram. This histogram
models the distribution of timbre vectors for notes.

Finally, in ensemble music, a sequence of notes can
be regarded as carrying a musical role such as a principal
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When a new node (nk) is created, the system �rst
chooses the link that gives the minimum Z value
(l1) among the candidate links (l1; � � � ; l4). The sys-
tem then evaluates Z values for the link candidates
(g1; � � � ; g3) from the selected node (nk�3), to choose
the link with the minimum Z value (g1). If g1 and
l1 are identical, the link composes a music stream. If
a music stream from nk�3 is already formed in a di-
rection other than g1, then the stream is cut, and the
direction of the music stream is changed to g1(= l1).

Figure 3: A procedure showing the MSN creation.

melody or a base-line. To introduce such musical seman-
tics, we evaluate the probability that a note plays a musical
role in a sequence of notes. This probability is used as P3
in Equation (6). Although P3 can be determined using a
statistical analysis, we introduce a simpli�ed approximation
for P3:

P3 = ar + b ; (8)

where a and b are constants, and r is the proportion of
the highest (or lowest) notes in the musical stream under
consideration.

4.2. Information Propagation on the MSN

Once the MSNs are created, the next task is to choose the
most likely set of hypotheses, taking advantage of the con-
textual links. This can be done by regarding the MSN as
the Bayesian network[6]. The Bayesian network is a tool
for calculating the a posteriori probability when a series of
events related to each other is observed. The information
propagation scheme described in [3] enables us to choose
the best-balance set of hypotheses each time an observa-
tion (i.e. matching result of a new incoming note) is made.
The amount of computation required in this propagation is
the linear order with respect to the number of notes.

5. EVALUATIONS

We have tested the proposed method using recordings of
real ensemble performances listed in Table 1. These songs
were arranged as three-part ensembles and each part was
single-pitched.

Templates used in the adaptive template matching stage
were played by di�erent manufacturers' instruments from
the ones used in the recording of the test songs. The num-
ber of taps in the template �ltering was 20. We stored



Table 1: Test songs used in the evaluation experiments.

Title
Instruments

#Notes
(Part order)

Annie Laurie * Fl, Vn, Pf 234
Lorelei ** Fl, Vn, Pf 297
Dreaming of Home and
Mother ***

Vn, Fl, Pf 304

Auld Lang Syne * Vn, Fl, Pf 242

Total 1077

Vn: Violin, Fl: Flute, Pf:Piano
Music by:
* Scotland air, ** Friedrich Silcher, *** J.P.Ordway

piano, 
ute, and violin templates; this means that the sys-
tem presumed that each input note was played by either
piano, 
ute, or violin. However, the number of simultane-
ous notes for each instrument was not given to the system.
The number of parts were also unknown.

In order to clearly evaluate the two methods focused
in this paper, we manually fed the system with the cor-
rect pitch information (MIDI note number) for each note,
although this information is normally yielded by the pre-
processing stage. Therefore the task of this evaluation tests
was a sound source identi�cation. The recognition rate R
was simply de�ned as :

R =
(#correctly recognized notes)

(#output notes in total)
(9)

The results are displayed in Figure 4. Here the \tem-
plate �ltering o�" condition means that the number of taps
in the template �ltering (M in Equation (4)) was chosen to
be 1. Therefore turning all the elements o� is equivalent to
the conventional matched �ltering. Thus Figure 4 clearly
shows that both of the adaptive template matching (PT
and TF) and the musical context integration (NT, TS and
CR) improves the source identi�cation accuracy.

6. CONCLUSIONS

We have presented a new processing method for ensem-
ble music recognition. The method consists of two stages,
adaptive template matching and musical context integra-
tion. Speci�cally, the evaluations using recordings of real
ensemble performances have revealed that the integration
of musical context improves the precision of source identi-
�cation from 67.8 % to 88.5 % on average.

We are planning to evaluate the system using musi-
cal performances that have further varieties; for example,
performances that include musical instruments di�erent to
those reported here, and also performances with more than
three parts. In addition, application of the proposed method
to an automatic transcription system and a music-database
indexing system will also be considered in future work.
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