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ABSTRACT in small changes in wavelet shape (for smooth wavelets):
For signal-based design of orthonormal (ON) wavelets, antwo wavelets whose parametrization angles are close to-
optimization of a cost function over aN-dimensional an-  gether will result in similar decomposition coefficients for
gle space is required. However: (1) thedim space in-  a given signal. Also, as we will show, the nature of the an-
cludes both smooth and non-smooth wavelets; (2) many ofgle parametrization is such that wavelets of similar shapes
the smooth wavelets are similar in shape. A more practi- can be found at widely differing angles.
cal approach for some applications may be to construct a  Rather than performing an optimization for each input
library of smooth ON wavelets in advance—a library that signal, then, a more practical approach may be to construct
consists of representative wavelet shapes for a given filterin advance a library of smooth ON wavelets. Matching to
length. Existing ON wavelet libraries (Daubechies, nearly- signal(s) can then be done by selecting the wavelet from
symmetric, Coiflets) provide only one wavelet for each fil- the library that optimizes some measure of interest, such as
ter length. We construct ON wavelet libraries using local entropy of the wavelet coefficients [1]. Existing ON wavelet
variation to determine wavelet smoothness and the discretdibraries (Daubechies, nearly-symmetric, Coiflets) provide
inner product to discriminate between wavelet shapes. Theonly one wavelet for each filter length. Itis of interest, then,
relationship between library size and the similarity thresh- to determine what kinds and how many smooth wavelets of
old is investigated for various filter lengths. We apply an distinct shapes can be found in the infinitely large collection
entropy-based wavelet selection algorithm to an exampleof ON wavelets.
signal set, and investigate compactness in the wavelet do-

main as a function of library size.
2. THE DISCRETE WAVELET TRANSFORM

1. INTRODUCTION The Discrete Wavelet Transform (DWT) can be computed
with the filterbank in Fig. 1 in which a sequence of inter-
est is decomposed into detail sequences at different reso-
tIutions (scales)d;,ds, ... ,dy and a coarse approximation
sequence;.

Recently, compactly supported orthonormal (ON) wavelets
have been parametrized [10], allowing signal-based wavele
design to be performed by optimization of a cost function
in the parameter space. The parametrization of [10] links a
wavelet of supporf—N, N + 1] to a set of N angles;any
choice of thelV angles leads to a valid orthonormal wavelet
basis. Several different algorithms for ON wavelet design
based on optimization of a cost function have been proposed
[2, 8]. Any optimization is complicated by the fact that the
angle space includes both smooth and non-smooth wavelets
since the parametrization guarantees only a vanishing ze-
roth moment. In most applications, however, at least some
degree of smoothness is required [3, 6, 7].

Furthermore, in many matching procedures, especially
those performed on a window by window basis [5], it may
be desirable to sacrifice small improvements in compactness

of representation to an improvement in efficiency (most op- The basis functions of a practical DWT are not shifted

timization routines usu:illllyhcannot _gur;tlranteel the lglobal ex; and scaled versions of the wavelet and the scaling function.
tremum anyway). Small changes in the angle values resultg;iher they are shifted versions of the discrete-time wavelet
This work is supported by the Bosack-Kruger Foundation. sequenceg’,j = 1,2,...J and a scaling sequende,

Figure 1:A J-level analysis filterbank.




defined through theit-transforms [7]:

H'(z) = H(z)H(z?) . ..H(ZQJ:_I)
Gi(z) = HR)H(?)...G(z¥ 1)

In the following sections, we will construct ON librariesby 1 s : ) ! s :
applying smoothness and similarity criteria to wavelet se-
guences at the lowest level in the filterbapk,

Figure 2:a) The Haar wavelet. b) An equally smooth wavelet
(6 = .3481).
3. PARAMETRIZATION OF ORTHONORMAL

WAVELETS

Perfect reconstruction QMF filterbanks were parametrized ~ Them-th order difference of a wavelet sequengceis
by Vaidyanathan [9]. Zou and Tewfik [10] imposed the ad- the sequenc®™ [6]:

ditional condition that the wavelet integrate to zero, thus .

parametrizing all tight frame (rather than orthonormal) wave- pim) — Z(_l)k <m> o

lets. This distinction is not crucial, however, because the set n k)Imk

. . . k=
of all tight frame wavelets which are not orthonormal is a ’

set with measure zero [4]. The local variation of wavelet sequence is tHenorm

Let the filters in the filterbank of Fig. 1 be of length of them-th order difference ¥ (™) = ||D§Lm)||1, The first-
2(N +1) (corresponding to a wavelet of SuppprtN, N +  order local variation, for example, is simply the sum of the
1]). The parametrization of [10] links thetransforms of  gifferences between succesive samples) = S |g7 —
the two filters toV paraunitary transfer matricds., k = ¢/ | we found that the first order difference was not sen-
L...,N: sitive enough for our purposes; the examples in the paper

HE) 1 QV s Vi (o 1 were all generated with second order differeide .
ZﬁZNG(Z) 2 N N-1 1 0 21>

T 5. WAVELET SIMILARITY
whereV (z) = I+(z72—1)vgv}, andvy, = [cos by, sin6y]
Matrix Vo is unitary, of the form A measure of wavelet similarity is the discrete inner product
between two wavelet sequenggls andg; :

—cosfy sinfy
Vo= sinfy cosfy|’
L " IP(p,q) =27 ZIggng‘q]J (1)
where anglé, is fixed to be3x /4 by the condition that the n

wavelet has vanishing zeroth momeffitf(¢)dt = 0). ) ) o .
Thus, filters corresponding to ON wavelets of support We will consider two wavelet sequences to be similar if their

[—N, N+1] can be generated froi free angleg; ... ,6y,  Innerproductis above some thresholgl where0 < 7, <
where0 < 6, < . 1. Note that the inner product as defined in (1) can also

be computed using the DWT in which one of the wavelet
sequences is decomposed using the filters corresponding to
the other: the inner productis given by the zeroth coefficient
dJ of the detail sequence at levél

4. WAVELET SMOOTHNESS

Since the ON parametrization fixes only the zeroth wavelet
moment to be zero, th&'-dim angle space is composed of
both smooth and non-smooth wavelets. The continous-time 6. SMOOTH ORTHONORMAL WAVELET

measure of wavelet smoothness is regularity, which is re- LIBRARIES

lated to the number of vanishing wavelet moments and can

be mathematically expressed through the Holder or SobolevSince our aim is to construct a general wavelet library, we
exponent [6, 7]. Constraints on the angles so that higherwill include wavelets that may not be suitable for some ap-
moments are equal to zero have been found [10], but thisplications (those with jumps, for example). The Haar wave-
does not necesarily guarantee wavelet smoothness [6, 7]let (V(2) = 8) can be used to set the smoothness threshold:
However, since the basis functions of a practical, finite-level in dividing the angle space into smooth and non-smooth re-
DWT are wavelet sequences,; = 1,...J, a discrete-  gions, we will consider wavelets less smooth than the Haar
time measure of smoothness, such as local variation [3, 6],wavelet to be non-smooth. The Haar wavelet as well as an-
can be used. other wavelet of equal smoothness are shown on Fig. 2.



tified, a measure of similarity must be applied to discrim-
inate among remaining wavelet sequences. Small changes
in the angle values result in small changes in wavelet shape
(for smooth wavelets). Furthermore, the angle parametriza-
tion is such that wavelets of similar shapes can be found
at widely differing angles. For example, the Haar wavelet
(and its translates) can be found at three values for filters
of length4: atd = 0,7/4,37/4. For N = 2, the Haar
wavelet can be found not only at several discrete points
([0,0],[%,01,[%. 5], [, 5]). but also at all points along the

Figure 3:Local variation as a function of angle fof = 1. The line |0, — 0,| = /2 (see Fig. 4).

dotted line is the smoothness threshold. Also shown are the angles ~ 1h€ simi!ar_ity threshold determines the library size (th_e
of wavelets in a library of size. number of distinct wavelets found) and depends on a partic-

ular application. There is, of course, a tradeoff between Ii-
brary size and efficiency, so the smallest possiehould
The dependence of local variation on angle for filters of _be used. Fig. 5 shows the library sizeas a function of t.he
length4 (one free angle) is shown on Fig. 3. The dotted line MN€' product threshold foN = 1,2,3. .J = 6 levels in
is the smoothness threshold. We can see that more than haH1e DWT were used to generate the wavelet sequences. we
of the angle line is not valid. For filters of lengdi{/V = 2), can see that, as expectec_j, fora given angl_e spaces with
we show on Fig. 4 the space divided into smooth regions larger d|menS|o_ns result in larger I|brar_y SIZES. Th_e aCt!Ja'
(shaded areas) and the non-smooth regions (the white ar\_/vavelets in the library are nojcnecessarlly unlquel—lfthe in-
eas). The smoothness threshold, of course, will differ from ner product of tWO wavelets_ls _Iarger thag, ch0|_ce has
aplication to application. However, it is evident that large to be made which one to eliminate. In the algorithm used

regions of the angle space are unusable once smoothness gere, the smoother of the two wavelets is kept at every step.
required. The symmetry evident in Fig. 3 and Fig. 4 results
from the fact that a wavelet(t) and its “inverse” in time,
1(—t), have the same local variation.
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Tip fOr N =1, 2, 3, whereN is the number of angles.
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Fig. 3 shows the angles corresponding todtveavelets
forming the library of filters of length, found by setting
j the smoothness thresholdtg = .97. Applying the same
‘ threshold to filters of length (IV = 2), we find34 wavelets;
0 A m2 8, Smd m they are shown on Fig. 4.
Figure 4: Regions of smoothness (shaded) fér= 2. Also 7. EXAMPLE APPLICATION
shown are the angles corresponding to wavelets in a library of
size34 The necessary library siZefor a particular application can

be determined by comparing compactness in the wavelet do-
Once smooth regions in the angle space have been idenmain asr;, is increased. We will use the entropy of the



DWT coefficients [1] as a measure of compactness in the
wavelet domain.

Given anL-level DWT, letw;,k = 0,... K be the se-
guence of wavelet coefficients (consisting of the detail coef-
ficientsd,,  at all levels and the approximation coefficients
at the lowest levet ), entropy is defined as:

K |wp,|? |wy,|?
E=— E - log. 2
— S ng S 9 ( )

w

whereS = Z,{i0|wk|2 is the energy in the wavelet coeffi-
cients (equal to the energy in the signal sequence). We will
normalize entropy bivg, K sothatitsrangei8 < £ < 1.

Fig. 6a shows on&024 point window of a noisy80K
point radio frequency interference (RFI) data set. The goal
is to isolate the noise-like signal from the RFI [5]; hence
the need for smooth wavelets which can be subtracted from
the signal while leaving most for the noise intact. We de-
termined the optimum library wavelet for eatt24 point
window by minimizing (2) over wavelets of ON libraries
of various sizes (for filters of length and8). The results
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Figure 6:a) Onel1024pt window of a noisy\80K RFI data set. b)
Entropy averaged over all the windows of the RFI as a function of
library size forN = 2, 3 (number of angles).

are given in Fig. 6b, which shows entropy averaged over [2] Desarte, P. et al, “Signal-Adapted Multiresolution Transform

all the windows of the RFI as a function of library size
(for N = 2,3). We can see that faN = 2 entropy de-

creases significantly when the library size is increased from [3]

one (just the smoothest wavelet) to abRitvavelets; after
that the decrease in entropy as the library size is increased
does not seem significant. Similarly, fof = 3, less than

40 wavelets seem to represent the angle space well. The fac{4]
that entropy decreases as the number of angles is increased
suggests that spaces of higher dimensions will present a bet{5]

ter match to this signal set.

8. SUMMARY

(6]

We have constructed smooth ON wavelet libraries using lo-
cal variation of a wavelet sequence to determine wavelet

smoothness and the discrete inner product to discriminatey)

between wavelet shapes fof = 1,2,3. We applied an
entropy-based and an energy-based wavelet selection algo-
rithm to an RFI signal set and compared compactness in the
wavelet domain as a function of library size. The results are
promising: for the RFI signal set, the number of wavelets
needed to represent thé-dim space forvV = 1,2, 3 is not
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