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ABSTRACT
For signal-based design of orthonormal (ON) wavelets, an
optimization of a cost function over anN -dimensional an-
gle space is required. However: (1) theN -dim space in-
cludes both smooth and non-smooth wavelets; (2) many of
the smooth wavelets are similar in shape. A more practi-
cal approach for some applications may be to construct a
library of smooth ON wavelets in advance—a library that
consists of representative wavelet shapes for a given filter
length. Existing ON wavelet libraries (Daubechies, nearly-
symmetric, Coiflets) provide only one wavelet for each fil-
ter length. We construct ON wavelet libraries using local
variation to determine wavelet smoothness and the discrete
inner product to discriminate between wavelet shapes. The
relationship between library size and the similarity thresh-
old is investigated for various filter lengths. We apply an
entropy-based wavelet selection algorithm to an example
signal set, and investigate compactness in the wavelet do-
main as a function of library size.

1. INTRODUCTION

Recently, compactly supported orthonormal (ON) wavelets
have been parametrized [10], allowing signal-based wavelet
design to be performed by optimization of a cost function
in the parameter space. The parametrization of [10] links a
wavelet of support[�N;N + 1] to a set ofN angles;any
choice of theN angles leads to a valid orthonormal wavelet
basis. Several different algorithms for ON wavelet design
based on optimization of a cost function have been proposed
[2, 8]. Any optimization is complicated by the fact that the
angle space includes both smooth and non-smooth wavelets
since the parametrization guarantees only a vanishing ze-
roth moment. In most applications, however, at least some
degree of smoothness is required [3, 6, 7].

Furthermore, in many matching procedures, especially
those performed on a window by window basis [5], it may
be desirable to sacrifice small improvements in compactness
of representation to an improvement in efficiency (most op-
timization routines usually cannot guarantee the global ex-
tremum anyway). Small changes in the angle values result
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in small changes in wavelet shape (for smooth wavelets):
two wavelets whose parametrization angles are close to-
gether will result in similar decomposition coefficients for
a given signal. Also, as we will show, the nature of the an-
gle parametrization is such that wavelets of similar shapes
can be found at widely differing angles.

Rather than performing an optimization for each input
signal, then, a more practical approach may be to construct
in advance a library of smooth ON wavelets. Matching to
signal(s) can then be done by selecting the wavelet from
the library that optimizes some measure of interest, such as
entropy of the wavelet coefficients [1]. Existing ON wavelet
libraries (Daubechies, nearly-symmetric, Coiflets) provide
only one wavelet for each filter length. It is of interest, then,
to determine what kinds and how many smooth wavelets of
distinct shapes can be found in the infinitely large collection
of ON wavelets.

2. THE DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform (DWT) can be computed
with the filterbank in Fig. 1 in which a sequence of inter-
est is decomposed into detail sequences at different reso-
lutions (scales),d1; d2; : : : ; dJ and a coarse approximation
sequencecJ .
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Figure 1:A J-level analysis filterbank.

The basis functions of a practical DWT are not shifted
and scaled versions of the wavelet and the scaling function.
Rather, they are shifted versions of the discrete-time wavelet
sequencesgjn; j = 1; 2; : : : J and a scaling sequencehJn,



defined through theirz-transforms [7]:

Hj(z) = H(z)H(z2) : : : H(z2
j
�1)

Gj(z) = H(z)H(z2) : : :G(z2
j
�1)

In the following sections, we will construct ON libraries by
applying smoothness and similarity criteria to wavelet se-
quences at the lowest level in the filterbank,gJn .

3. PARAMETRIZATION OF ORTHONORMAL
WAVELETS

Perfect reconstruction QMF filterbanks were parametrized
by Vaidyanathan [9]. Zou and Tewfik [10] imposed the ad-
ditional condition that the wavelet integrate to zero, thus
parametrizing all tight frame (rather than orthonormal) wave-
lets. This distinction is not crucial, however, because the set
of all tight frame wavelets which are not orthonormal is a
set with measure zero [4].

Let the filters in the filterbank of Fig. 1 be of length
2(N +1) (corresponding to a wavelet of support[�N;N +
1]). The parametrization of [10] links thez-transforms of
the two filters toN paraunitary transfer matricesVk , k =
1; : : : ; N :�

H(z)
z�2NG(z)

�
=

p
2

2
VN (z)VN�1(z) � � �V1(z)V0

�
1
z�1

�
;

whereVk(z) = I+(z�2�1)vkv
T
k , andvk =

�
cos �k sin �k

�T
Matrix V0 is unitary, of the form

V0 =

�� cos �0 sin �0
sin �0 cos �0

�
;

where angle�0 is fixed to be3�=4 by the condition that the
wavelet has vanishing zeroth moment (

R
 (t)dt = 0).

Thus, filters corresponding to ON wavelets of support
[�N;N+1] can be generated fromN free angles�1; : : : ; �N ,
where0 � �k < �.

4. WAVELET SMOOTHNESS

Since the ON parametrization fixes only the zeroth wavelet
moment to be zero, theN -dim angle space is composed of
both smooth and non-smooth wavelets. The continous-time
measure of wavelet smoothness is regularity, which is re-
lated to the number of vanishing wavelet moments and can
be mathematically expressed through the Holder or Sobolev
exponent [6, 7]. Constraints on the angles so that higher
moments are equal to zero have been found [10], but this
does not necesarily guarantee wavelet smoothness [6, 7].
However, since the basis functions of a practical, finite-level
DWT are wavelet sequencesgjn; j = 1; : : : J , a discrete-
time measure of smoothness, such as local variation [3, 6],
can be used.
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Figure 2: a) The Haar wavelet. b) An equally smooth wavelet
(� = :3481).

Them-th order difference of a wavelet sequencegJ is
the sequenceD(m)

n [6]:

D(m)
n =

mX
k=0

(�1)k
�
m

k

�
gJn�k:

The local variation of wavelet sequence is the1-norm
of them-th order difference :V (m) = kD(m)

n k1. The first-
order local variation, for example, is simply the sum of the
differences between succesive samples:V (1) =

P
n jgJn �

gJn�1j. We found that the first order difference was not sen-
sitive enough for our purposes; the examples in the paper
were all generated with second order differenceV (2).

5. WAVELET SIMILARITY

A measure of wavelet similarity is the discrete inner product
between two wavelet sequencesgJpn andgJqn :

IP (p; q) = 2(�J)
X
n

jgJpngJqn j (1)

We will consider two wavelet sequences to be similar if their
inner product is above some threshold�ip, where0 � �ip �
1. Note that the inner product as defined in (1) can also
be computed using the DWT in which one of the wavelet
sequences is decomposed using the filters corresponding to
the other: the inner product is given by the zeroth coefficient
dJ0 of the detail sequence at levelJ .

6. SMOOTH ORTHONORMAL WAVELET
LIBRARIES

Since our aim is to construct a general wavelet library, we
will include wavelets that may not be suitable for some ap-
plications (those with jumps, for example). The Haar wave-
let (V (2) = 8) can be used to set the smoothness threshold:
in dividing the angle space into smooth and non-smooth re-
gions, we will consider wavelets less smooth than the Haar
wavelet to be non-smooth. The Haar wavelet as well as an-
other wavelet of equal smoothness are shown on Fig. 2.
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Figure 3:Local variation as a function of angle forN = 1. The
dotted line is the smoothness threshold. Also shown are the angles
of wavelets in a library of size9.

The dependence of local variation on angle for filters of
length4 (one free angle) is shown on Fig. 3. The dotted line
is the smoothness threshold. We can see that more than half
of the angle line is not valid. For filters of length6 (N = 2),
we show on Fig. 4 the space divided into smooth regions
(shaded areas) and the non-smooth regions (the white ar-
eas). The smoothness threshold, of course, will differ from
aplication to application. However, it is evident that large
regions of the angle space are unusable once smoothness is
required. The symmetry evident in Fig. 3 and Fig. 4 results
from the fact that a wavelet (t) and its “inverse” in time,
 (�t), have the same local variation.
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Figure 4: Regions of smoothness (shaded) forN = 2. Also
shown are the angles corresponding to wavelets in a library of
size34

Once smooth regions in the angle space have been iden-

tified, a measure of similarity must be applied to discrim-
inate among remaining wavelet sequences. Small changes
in the angle values result in small changes in wavelet shape
(for smooth wavelets). Furthermore, the angle parametriza-
tion is such that wavelets of similar shapes can be found
at widely differing angles. For example, the Haar wavelet
(and its translates) can be found at three values for filters
of length4: at � = 0; �=4; 3�=4. ForN = 2, the Haar
wavelet can be found not only at several discrete points
([0; 0]; [�4 ; 0]; [

�
4 ;

�
2 ]; [

�
2 ;

�
2 ]), but also at all points along the

line j�2 � �1j = �=2 (see Fig. 4).
The similarity threshold determines the library size (the

number of distinct wavelets found) and depends on a partic-
ular application. There is, of course, a tradeoff between li-
brary size and efficiency, so the smallest possible�ip should
be used. Fig. 5 shows the library sizeL as a function of the
inner product threshold forN = 1; 2; 3. J = 6 levels in
the DWT were used to generate the wavelet sequences. We
can see that, as expected, for a given�ip, angle spaces with
larger dimensions result in larger library sizes. The actual
wavelets in the library are not necessarily unique—if the in-
ner product of two wavelets is larger than�ip, a choice has
to be made which one to eliminate. In the algorithm used
here, the smoother of the two wavelets is kept at every step.
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Figure 5: Library size as a function of inner product threshold
�ip for N = 1; 2; 3, whereN is the number of angles.

Fig. 3 shows the angles corresponding to the9 wavelets
forming the library of filters of length4, found by setting
the smoothness threshold to�ip = :97. Applying the same
threshold to filters of length6 (N = 2), we find34 wavelets;
they are shown on Fig. 4.

7. EXAMPLE APPLICATION

The necessary library sizeL for a particular application can
be determined by comparing compactness in the wavelet do-
main as�ip is increased. We will use the entropy of the



DWT coefficients [1] as a measure of compactness in the
wavelet domain.

Given anL-level DWT, letwk ; k = 0; : : :K be the se-
quence of wavelet coefficients (consisting of the detail coef-
ficientsdm;k at all levels and the approximation coefficients
at the lowest levelcJ;k), entropy is defined as:

E = �
KX
k=0

jwkj2
S

� log2
jwkj2
S

; (2)

whereS =
PK

k=0jwk j2 is the energy in the wavelet coeffi-
cients (equal to the energy in the signal sequence). We will
normalize entropy bylog2K so that its range is0 � E � 1.

Fig. 6a shows one1024 point window of a noisy80K
point radio frequency interference (RFI) data set. The goal
is to isolate the noise-like signal from the RFI [5]; hence
the need for smooth wavelets which can be subtracted from
the signal while leaving most for the noise intact. We de-
termined the optimum library wavelet for each1024 point
window by minimizing (2) over wavelets of ON libraries
of various sizes (for filters of length6 and8). The results
are given in Fig. 6b, which shows entropy averaged over
all the windows of the RFI as a function of library size
(for N = 2; 3). We can see that forN = 2 entropy de-
creases significantly when the library size is increased from
one (just the smoothest wavelet) to about20 wavelets; after
that the decrease in entropy as the library size is increased
does not seem significant. Similarly, forN = 3, less than
40 wavelets seem to represent the angle space well. The fact
that entropy decreases as the number of angles is increased
suggests that spaces of higher dimensions will present a bet-
ter match to this signal set.

8. SUMMARY

We have constructed smooth ON wavelet libraries using lo-
cal variation of a wavelet sequence to determine wavelet
smoothness and the discrete inner product to discriminate
between wavelet shapes forN = 1; 2; 3. We applied an
entropy-based and an energy-based wavelet selection algo-
rithm to an RFI signal set and compared compactness in the
wavelet domain as a function of library size. The results are
promising: for the RFI signal set, the number of wavelets
needed to represent theN -dim space forN = 1; 2; 3 is not
large. Further research is needed to extend the results to
higher dimensions.
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Figure 6:a) One1024pt window of a noisy80K RFI data set. b)
Entropy averaged over all the windows of the RFI as a function of
library size forN = 2; 3 (number of angles).
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