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ABSTRACT
Biorthogonal bases of compactly-supported wavelets are charac-
terized by the FIR perfect-reconstruction filterbanks to which they
correspond. In this paper we develop explicit representations of all
such filterbanks, allowing us to generate every possible biorthog-
onal compactly-supported wavelet basis. For these filterbanks, the
productH(z) = H(z) eH(z) of the two lowpass filters must have
N � 2 zeros atz = �1 . There areN + 1 minimal-length
filterbanks for eachN . The filterbanks associated with standard
orthogonal and symmetric biorthogonal wavelet bases are found
as a special case by using appropriate factorizations of symmetric
H(z) with evenN ; other filterbanks lead to novel biorthogonal
bases.

1. INTRODUCTION

The close relationship between orthonormal wavelet bases and quad-
rature-mirror filter (QMF) filterbanks is well-known [6, 3, 4]. Dau-
bechies’ success in exploiting this relationship led her, along with
Cohen and Feauveau, to construct biorthogonal wavelet bases from
more general perfect-reconstruction filterbanks [2]. Their work,
however, required that the filters be linear phase, and resulted in
symmetric wavelets. While this may be desirable in many circum-
stances, in others it might prove needlessly restrictive. Further-
more, since orthonormal wavelets (other than the Haar wavelet)
never exhibit symmetry, Cohen, Daubechies, and Feauveau’s con-
struction excludes Daubechies’ earlier results for orthonormal wave-
let bases. In this paper we generalize their work to formulate
methods for generating all FIR perfect-reconstruction filterbanks
which lead to biorthogonal bases of regular compactly-support-
ed wavelets (including, as special cases, Daubechies’ orthonor-
mal bases and Cohen, Daubechies, and Feauveau’s biorthogonal
bases).

2. BIORTHOGONAL MULTIRESOLUTION ANALYSIS
AND PERFECT-RECONSTRUCTION FILTERBANKS

A biorthogonal multiresolution analysis is specified by dual scal-
ing functions� and e� and dual wavelets and e . The multires-
olution functions satisfy dilation equations:

�(x) =
X
n

hn �
p
2�(2x� n) (1)
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Figure 1: Two-channel perfect-reconstruction filterbank

e�(x) =X
n

eh�n � p2 e�(2x� n) (2)

 (x) =
X
n

gn �
p
2�(2x� n) (3)

e (x) =X
n

eg�n � p2 e�(2x� n) (4)

(we definex�n = x�n , where the overbar denotes complex conju-
gation) [2]. The dilation coefficient sequencesh , eh , g , andeg—
given byL2(R) inner products among the multiresolution func-
tions and their dilates—turn out to be impulse responses of the
filters of the two-band perfect-reconstruction filterbank shown in
Fig. 1; the filters are FIR whenever the multiresolution functions
are compactly-supported. Conversely, for appropriate two-channel
perfect-reconstruction filterbanks (1)–(4) can be solved for� , e� ,
 , and e , which are compactly-supported if the filters are FIR
[4, 5]. Hence finding such filterbanks is the key to constructing
biorthogonal bases of compactly-supported wavelets.

3. PERFECT-RECONSTRUCTION CONDITIONS FOR
BIORTHOGONAL WAVELETS

Consider the arbitrary two-channel subband coder of Fig. 1 (this
is QMF if ehn = h�n , egn = g�n , and gn = (�1)nh1�n , but
here, in the general case, we presuppose no relationships among
the filters). For a filterbank composed entirely of FIR filters, the
system will yield perfect reconstruction if and only if

H(z) eH(z) +H(�z) eH(�z) = 2; (5)

or, in the time domain,X
n

hneh2l�n = �l;



where with no real loss of generality we take

gn = (�1)nehn�1; egn = (�1)nhn+1 (6)

[8, 7, 2]. To find solutions to (5), note thatH(z) and eH(z) enter
into it only through their (FIR) product

H(z) = H(z) eH(z); (7)

(5) is really just
H(z) +H(�z) = 2: (8)

Since
P

n
hneh2l�n = (#2)(h�eh) , it is clear that all FIR solutions

are given by

H(z) = 1 +

k2X
k=k1

c2k�1z
�(2k�1)

for arbitrary complexc2k�1 . Hence all FIR perfect-reconstruc-
tion filterbanks can be obtained by starting with anyH(z) =PN2

n=�N1

cnz
�n such thatc2k = �k (N1 andN2 are thus non-

negative and odd if positive), factoring this into FIRH(z) andeH(z) , and then constructingg andeg from h andeh according to
(6).

While this provides a general characterization of FIR perfect-
reconstruction filterbanks, for the filterbanks to give rise to biorthog-
onal wavelet bases we must impose further constraints onH andeH [2]. First, bothH(1) and eH(1) must be

p
2 , or equivalently

H(1) = 2 (with the understanding that the factorization is nor-
malized appropriately). Furthermore, the filtersH and eH must
have at least one zero atz = �1 each, i.e.,H(z) must have
N � 2 zeros atz = �1 ; in fact, for regular (smooth) scaling
functions and wavelets, the filters must have even more zeros there
[5]. Conveniently, withH(�1) = 0 (8) implies automatically that
H(1) = 2 , taking care of the first requirement. The second means
that

H(z) = (z + 1)NP (z); (9)

where N � 2 and P (z) is a Laurent polynomial (a polyno-
mial with potentially positiveandnegative exponents). Combining
(8) and (9), then, the central problem in finding FIR perfect-re-
construction filterbanks which yield regular biorthogonal wavelet
bases is determining Laurent polynomial solutionsP (z) to

A(z)P (z) +A(�z)P (�z) = 2 (10)

for A(z) = (z + 1)N andN � 2 .

4. SOLVING THE WAVELET PERFECT
RECONSTRUCTION EQUATION

Assume for the moment that (10) has some solution, sayP0(z)
(we will see shortly that this is so). Then there are actually in-
finitely many more, given by

P (z) = P0(z) +R(z)A(�z); (11)

whereR(z) is any Laurent polynomial satisfyingR(�z) = �R(z)
(this is evident by direct substitution of (11) into the left-hand side
of (10)). In fact, (11) encompassesall solutions. For letP1(z)

and P2(z) be two Laurent solutions to (10), and call their (Lau-
rent) differenceP 0(z) = P1(z)� P2(z) . Then

0 =
�
A(z)P1(z) +A(�z)P1(�z)

�
�
�
A(z)P2(z) +A(�z)P2(�z)

�
= A(z)P 0(z) +A(�z)P 0(�z);

this shows thatA(z)P 0(z) = �A(�z)P 0(�z) and hence that
A(�z) = (1� z)N can be factored fromA(z)P 0(z) . Of course
the zeros ofA(z) are atz = �1 , not z = 1 , soA(�z) must be
a factor ofP 0(z) : P 0(z) = A(�z)R(z) . Furthermore,A(z) �
A(�z)R(z) = �A(�z) �A(z)R(�z) , or A(z)A(�z)

�
R(z)+

R(�z)
�
= 0 . This can happen only ifR(z) + R(�z) is identi-

cally 0, i.e., only ifR(�z) = �R(z) . Necessarily, then, any two
solutions of (10) differ by the product ofA(�z) and an odd Lau-
rent polynomial. Thus (11) provides all solutions to (10) should a
particular one exist.

To show the existence of particular solutions, we use Bezout’s
theorem [2], a classical result for (ordinary, not Laurent) polyno-
mials. It says that given two polynomialsa(x) and b(x) of de-
greesNa andNb , respectively, then ifa(x) and b(x) have no
common zeros there exist unique polynomialsp(x) and q(x) of
degrees at mostNb � 1 , Na � 1 , respectively, such that

a(x) p(x) + b(x) q(x) = 1:

Surprisingly enough, this is equivalent to a more general result,
namely, that under the same circumstances, forany polynomial
c(x) of degreeNa +Nb � 1 or less there exist uniquep(x) and
q(x) (satisfying the same degree conditions) such that

a(x)p(x) + b(x) q(x) = c(x):

One way to see this is to write out the left-hand side in terms of
the coefficients ofa , b , p , andq and match the result to the right-
hand side, which yields a system ofNa + Nb linear equations
in as many unknowns. The standard Bezout theorem guarantees a
unique solution for one particular right-hand side; for square linear
systems, though, this implies the existence of a unique solution for
any right-hand side.

To apply Bezout’s theorem to (10), recall from section 3 that
H(z) = c�N1

zN1+: : :+cN2
z�N2 for N1 andN2 that are either

0 or else odd and positive. Comparing this with (9) shows that the
terms ofP (z) have exponents ranging fromN1 � N down to
�N2 . So if P0(z) is a particular solution to (10), we can write

P0(z) = z
�N2p0(z); (12)

wherep0(z) is an ordinary polynomial satisfying

A(z) p0(z) + (�1)N2A(�z) p0(�z) = 2zN2 : (13)

SinceA(z) = (z + 1)N shares no roots with(�1)N2A(�z) ,
the generalized version of Bezout’s theorem tells us that forN2 =
0; 1; 3; : : : ; 2N � 1 there are unique ordinaryp(z) and q(z) of
degreeN � 1 or less such that

A(z) p(z) + (�1)N2A(�z) q(z) = 2zN2 :

If we substitute�z for z , this becomes

A(�z) p(�z) + (�1)N2A(z) q(�z) = 2(�1)N2z
N2 ;



or
A(z) q(�z) + (�1)N2A(�z) p(�z) = 2zN2 :

But notice thatdeg
�
q(�z)

�
= deg q � N � 1 and likewise

deg
�
p(�z)

�
� N � 1 . So actually, by the uniqueness of the

Bezout solution,q(z) = p(�z) . Thus for eachN2 = 0; 1; 3; : : : ;
2N � 1 there is in fact an ordinary polynomialp0(z) satisfying
(13), which along with (12) establishes the existence of particular
solutions to (10).

While there are implicit methods for finding Bezout solutions,
for (13), whereA(z) = (z+1)N , we can use reasoning similar to
that in [2] to determinep0(z) explicitly. With the transformation
w = 1 � z (so thatz = 1� w ), (13) becomes

(2� w)Np0(1� w) + (�1)N2w
N
p0(w � 1) = 2(1�w)N2 ;

or

p0(1� w) = 2(1� w)N2(2� w)�N (14)

� (�1)N2w
N (2� w)�Np0(w � 1):

Now do a Taylor expansion of(2� w)�N :

(2� w)�N =
�
1
2

�N 1X
k=0

�
1
2

�k�N + k � 1

k

�
w
k
:

Since(1� w)N2 =
PN2

k=0
(�1)k

�
N2

k

�
wk and the coefficients of

the product of polynomials is the convolution of their coefficients,

2(1 � w)N2(2�w)�N =

�
1
2

�N�1 1X
k=0

� kX
m=max(k�N2;0)

(�1)k�m
�

N2

k �m

�

�
�
1
2

�m�N +m� 1

m

��
w
k
:

Notice, though, thatp0(w) is a polynomial of degreeN � 1 or
less, and hence thatp0(1 � w) and p0(w � 1) are as well. So
the left-hand side of (14) has no terms of degreeN or higher. The
second part of the right-hand side of (14), however, hasonly terms
of degreeN or more. These, then, must cancel the corresponding
high-degree terms of the first part of the right-hand side, and thus

p0(1�w) =

�
1
2

�N�1 N�1X
k=0

� kX
m=max(k�N2;0)

(�1)k�m
�
1
2

�m

�
�
N +m� 1

m

��
N2

k �m

��
w
k
:

Putting this in terms ofz , expanding(1�z)k , and using (12), we
get forN2 = 0; 1; 3; : : : ; 2N � 1 the particular solutions

P0(z) =
�
1
2

�N�1
z
�N2 (15)

�
N�1X
n=0

(�1)n
�N�1X
k=n

�
k

n

�
�

kX
m=max(k�N2;0)

(�1)k�m
�
1
2

�m

�
�
N +m� 1

m

��
N2

k �m

��
z
n
:

5. EXAMPLES

From (11) it is obvious that for anyN there are arbitrarily long
P (z) which satisfy (10). The particular solutions given by (15),
on the other hand, are short. For example, withN = 2 , we have

P0(z) = � 1
2
z + 1 (N2 = 0)

P0(z) =
1
2
z�1 (N2 = 1)

P0(z) = z�2 � 1
2
z�3 (N2 = 3);

with N = 3 ,

P0(z) =
3
8
z2 � 9

8
z + 1 (N2 = 0)

P0(z) = � 1
8
+ 3

8
z�1 (N2 = 1)

P0(z) =
3
8
z�2 � 1

8
z�3 (N2 = 3)

P0(z) = z�3 � 9
8
z�4 + 3

8
z�5 (N2 = 5):

Notice that whenN2 = 0 or 2N � 1 the P0(z) have lengthN ,
while for intermediate values ofN2 they have lengthN�1 . This
holds in general: forN2 = 0 we see thatP0(0) = 1 from (12)
and (13) and that the coefficient ofzN�1 is non-zero from (15).
From this, (11), the fact thatN1 andN2 must be odd and positive
or else zero, and the uniqueness of Bezout solutions one can see
that the lengths of theP0(z) must follow the pattern observed
above. Furthermore, (11) shows that all other solutions are longer.

Look again at theN = 2 solutions. WhenN2 = 1 , P0(z)
leads to Haar wavelets. In fact, since the derivation assumed noth-
ing other than what is strictly necessary for the resulting filterbanks
to correspond to biorthogonal wavelet bases, we fully expect to
find other families of orthogonal and biorthogonal wavelets as par-
ticular solution cases. For example, withN = 4 andN2 = 3 ,

P0(z) = � 1
16
z
�1 + 1

4
z
�2 � 1

16
z
�3
:

This has two roots,z = 0:2679 and z = 3:7321 . Assigning
the smaller toH along with two zeros atz = �1 and using the
larger and the other twoz = �1 zeros for eH produces the classic
DaubechiesN = 2 orthonormal functions (ourN is twice that in
[3]). Alternatively, keepingP0(z) intact and pairing it with some
of the zeros atz = �1 yields symmetric biorthogonal bases as in
[2]. In general, we find both Daubechies’ orthonormal and Cohen,
Daubechies, and Feauveau’s biorthogonal bases from appropriate
factorizations of solutions with evenN andN2 = N � 1 .

For other factorizations, otherN2 , or oddN , we get filter-
banks which correspond to novel biorthogonal bases (even com-
plex-valued ones). As a fully-worked example of this situation,
considerN = 5 andN2 = 7 . For these parameters

P0(z) =
35
128

z
�4 � 47

128
z
�5 + 25

128
z
�6 � 5

128
z
�7
;

with roots atz = 0:4366� 0:3370i andz = 0:4696 . Pairing the
two complex roots with 3z = �1 zeros forH and the real root
with the remaining 2z = �1 zeros for eH gives

H(z) = 0:4102 + 0:8724z�1 + 0:2808z�2

� 0:2901z�3 + 0:01614z�4 + 0:1248z�5 ;

eH(z) = 0:6666z + 1:02 + 0:0405z�1 � 0:3131z�2
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Figure 2: Scaling function� (top) and duale� (bottom)

(note thatH(1) = eH(1) =
p
2 ). Finally, obtainingg and eg

from (6), we get biorthogonal multiresolution analysis functions
from (1)–(4). The dual scaling functions� and e� are shown in
Fig. 2; the dual wavelets and e appear in Fig. 3. It should
be noted that this procedure doesn’t always succeed; some of the
filterbanks created this way do not actually correspond to a valid
biorthogonal multiresolution analysis. There is, however, an ef-
ficient and definitive test that can be applied toH(z) and eH(z)
that will verify if the filterbank is associated with a biorthogonal
wavelet basis [1] (as is the case, for instance, in our example).

6. CONCLUSIONS

We have presented an explicit characterization of all FIR perfect-
reconstruction filterbanks for which the product filterH(z) =

H(z) eH(z) has 2 or more zeros atz = �1 . Since these are
precisely the filterbanks which give rise to biorthogonal bases of
regular compactly-supported wavelets, then, we have an effective
general framework for generating every possible such basis, free
of any particular restrictions such as orthogonality or wavelet sym-
metry.
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