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ABSTRACT
This paper describes a technique for segmenting video using
hidden Markov models (HMM).  Video is segmented into
regions defined by shots, shot boundaries, and camera
movement within shots. Features for segmentation include an
image-based distance between adjacent video frames, an audio
distance based on the acoustic difference in intervals just before
and after the frames, and an estimate of motion between the two
frames. Typical video segmentation algorithms classify shot
boundaries by computing an image-based distance between
adjacent frames and comparing this distance to fixed, manually
determined thresholds.  Motion and audio information is used
separately. In contrast, our segmentation technique allows
features to be combined within the HMM framework.  Further,
thresholds are not required since automatically trained HMMs
take their place. This algorithm has been tested on a video data
base, and has been shown to improve the accuracy of video
segmentation over standard threshold-based systems.

1. INTRODUCTION

An important aspect of video indexing is the ability to segment
video into meaningful segments. One type of segment is a shot,
or a sequence of video frames from a single camera. In produced
video such as television or movies, shots are separated by
different types of transitions, or boundaries. The simplest
transition is a cut, an abrupt shot change that occurs in a single
frame. Gradual transitions between shots are more complex.
Two common types that we consider in this work are fades and
dissolves. Camera movement within a shot can sometimes be
mistaken for gradual transitions. We model two types of camera
movement, the pan and the zoom.

Shot boundaries are typically found by computing an image-
based distance between adjacent frames of the video, and noting
when this distance exceeds a certain threshold. The distance
between adjacent frames can be based on statistical properties
of pixels [4], compression algorithms [1], or edge differences
[13]. The most widely used method is based on histogram
differences. If the bin-wise difference between histograms for
adjacent frames exceeds a threshold, a shot boundary is
assumed. Zhang et al. [14] used this method with two thresholds
in order to detect gradual transitions.

Audio and motion features have been used to improve shot
boundary detection. Saraceno et al.[8] classify audio according
to silence, speech, music, or noise and use this information to
verify shot boundaries hypothesized by image-based features. In
[5], speaker identification is used to cluster shots. Phillips and
Wolf [6] use motion features alone or with histogram differences

to improve boundary detection. Shahraray [9] combines motion
features with pixel differences.

In this work, we combine information from features that are
based on image differences, audio differences, and motion for
segmenting video. Hidden Markov models provide a unifying
framework for jointly modeling these features. In Wolf [12],
HMMs are used to build scenes from video which has already
been segmented into shots and transitions. Here, HMMs are
used to perform segmentation directly based on multiple
features.

States of the HMM consist of the various segments of a video,
namely the shots themselves, the transitions between them: cuts,
fades, and dissolves, and camera motion: pans and zooms. The
HMM contains arcs between states showing the allowable
progressions of states. The parameters of the HMM are learned
using training data in the form of the frame-to-frame distances
for a video labeled with shots, transition types, and motion.
Once the HMM is trained, it can be used for segmenting video
into its component shots and transitions by applying the Viterbi
algorithm to determine the most likely sequence of states
through the HMM.

2. Features

We consider three types of features for use in video
segmentation. The first is a standard histogram distance, which
measures the difference between adjacent frames of video based
on a gray-scale histogram. The second is an audio distance
measure, which computes the distance between the audio in
intervals just before and just after the frames. The third feature
is based on an estimate of object motion between two adjacent
video frames.

2.1  Image Features

The histogram feature measures the distance between adjacent
video frames based on the distribution of luminance levels. It is
simple, easy to compute, and works well for most types of video
[2]. The luminance of a pixel Lpixel is computed from the 8-bit
red (R), green (G), and blue (B) components as

Lpixel = .3008(R)+.5859(G)+.1133(B).

H is a 64 bin histogram computed by counting the number of
pixels in each bin of 4 gray levels, thus

H[k]=# of pixels where k=Lpixel/4, 0<=k<=63.

The histogram feature DH  is the absolute bin-wise difference of
the histograms of adjacent frames. DH  is computed as



DH = Σ |H[k] -Hprev[k]|, 0<=k<=63.

The image distance is computed between each pair of adjacent
frames at the frame rate of 30 times per second.

2.2 Audio Features

In contrast to other approaches to using audio features to aid in
video segmentation, we do not attempt to categorize audio into
classes such as speech, silence, music, and noise [8], or to
identify speakers [5]. Rather, we take the approach used with
the video feature and compute an audio distance measure. This
distance is computed between two adjacent intervals of audio X
and Y (see Figure 1). In order for this distance to accurately
reflect differences in the type of audio (speech, silence, etc.) it is
necessary to use a relatively long interval. This is because
speech is composed of short (approximately 30 ms) intervals
containing either silence, periodic voiced signal (typically
vowels), or noise. Silence can also appear as pauses in speech.
Thus using short analysis windows for audio could show large
differences in purely speech audio. In our work, we compute
audio distances based on sliding two-second intervals.
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Figure 1.  Fn and Fn+1 are adjacent frames of video
sampled at 30 frames per second. Xi and Yi are 2 second
intervals used for audio analysis.

Audio is first converted to a sequence of 12-dimensional cepstal
vectors vi, computed every 20 ms. [7]. Thus the two-second
interval X consists of a sequence of 100 cepstral vectors
X=(v1,…,v100). Let X and Y be two such intervals, and let Z be
the four-second interval obtained by concatenating X and Y, Z =
(X,Y).

The audio distance measure is similar to the likelihood ratio
measure first suggested by Gish [3] and used in [10] for audio
segmentation. Let H0 denote the hypothesis that X and Y are the
same audio type, and let H1 denote the hypothesis that they are
different types of audio. Let L(X:θ Χ ) be the likelihood of the X
interval. We assume the cepstral vectors in the interval are
independent, and are characterized by a Gaussian mixture
distribution consisting of 16 Gaussians. θ X represents the
parameters of this distribution, namely the 16 mixture
coefficients, the 12-dimensional mean vector, and the covariance
matrix, which we assume is diagonal. Let L(Y:θ Y) and
L(Z:θ Z) be defined similarly. The likelihood L1 that the two
intervals are different audio types is then L1 = L(X:θ X)
L(Y:θ Y). The likelihood that the two intervals are the same
audio type is L0 = L(Z:θ Z). Thus the likelihood ratio for testing
the hypothesis that the intervals represent the same sound type

is λ L = L0/L1. This ratio is large when H0 is true, that is when
X and Y have the same statistics, and small otherwise. Thus the
distance measure between intervals X and Y is set to d(X,Y) = -
log(λ L), which is large when X and Y are different.

The audio feature is computed at a rate of 5 times per second by
sliding the intervals shown in Figure 1 by 10 cepstral vectors.
Since the video difference is computed 30 times per second, we
replicate each audio distance 6 times so that the audio feature is
computed at the same rate.

2.3 Motion Features

The motion feature detects motion of objects between frames,
and is useful for identifying camera movement such as pans and
zooms.  Motion vectors are computed using an exhaustive-
search block-matching algorithm in a 24x24 window for nine
evenly distributed 40x40 pixel blocks.  Large blocks are used to
minimize the effect of object motion.  The presence of motion is
detected using two features computed from the coherence of the
motion vectors. The first feature is the magnitude of the average
of the nine motion vectors.  The second feature is the average
magnitude of the nine motion vectors.  The combination of the
two features allows pans and zooms to be detected.  When both
features have a high value, a pan is indicated. A zoom occurs
when the first feature is small but the second feature is large.
When the second feature is small, no camera motion is
occurring.  Figure 2 shows some sample motion vector fields
and the feature values that result
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Figure 2. Motion features for pan and zoom.

3. HMM Segmentation
Figure 3 shows the hidden Markov model (HMM) used for
video segmentation. The shot state models segments of the
video within a single shot. We use separate states to model
camera motion, namely pan and zoom. The other states model
the transition segments between shots, namely cuts, fades, and
dissolves. The arcs between states model the allowable
progressions of segments. Thus from the shot state it is possible
to go to any of the transition states, but from a transition state it
is only possible to return to the shot state. This assures that only



a single transition segment occurs between shots. Similarly, the
pan and zoom state can only be reached from the shot state,
since they are in fact subsets of the shot. The arcs from a state to
itself model the length of time the video is in that particular
state.
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Figure 3. Hidden Markov model for video segmentation.

A probability is associated with each of the arcs in Figure 3. The
probability PT is the probability that a transition occurs. We
assume for simplicity that each of the transition types, namely
cut, fade, and dissolve, are equally likely. The probability PM is
the probability of camera motion, namely the probability of a
pan or zoom. The probability 1-3PT –2PM is the probability of
staying in  a shot. The probability PF is the probability of staying
in the fade state, and models the duration of a fade. The
probability 1-PF is the probability of returning from a fade back
to a shot. The other probabilities PD, PZ and PP are defined
similarly.

A cut is modeled by two states in the HMM, shown as CUT1
and CUT2 Figure 3. When an analog video consisting of fields
is digitized into frames, the cuts may fall across two frames.
Instead of producing one large frame-to-frame distance value,
two lower values are produced.  By explicitly modeling the
noisy nature of some cuts, we avoid mislabeling these cuts as
short gradual transitions.  By using a two-state cut model rather
than a self-transition, we correctly model the known duration of
cuts.

Each state of the hidden Markov model (HMM) has an
associated probability distribution that models the distribution
of the image, audio, and motion features conditioned on the
state. We assume that the features are independent, so that the
joint distribution is the product of the probability distributions

for each of the features. In this work, we use either a single
Gaussian or a Gaussian mixture distribution for the state-
conditional probability distributions. Since fewer parameters are
required, a single Gaussian is used to model most state
conditional feature distributions. One exception is the image
feature distribution for the fade state, which uses a mixture of 2
Gaussians. This is because the histogram difference during a
fade can have both large and small values.

The parameters of the HMM, namely the transition probabilities
PT, PM, PF, PC, PD, PZ, and PP, as well as the means and
variances of the various Gaussian distributions, are learned
during a training phase. Data for training consists of features
computed for a collection of video, labeled according to whether
there is a shot, a cut, a fade, a dissolve, a pan or a zoom. Given
this data, a standard algorithm for training hidden Markov
model parameters, namely Baum-Welch re-estimation [7], is
applied. It is important that sufficient data, in terms of both
quantity and variety, be used in training so that the resulting
parameters can be applied to arbitrary video.

Once the parameters are trained, segmenting the video into its
shots, camera motions, and transitions is performed using the
Viterbi algorithm, a standard technique for segmentation and
recognition with HMMs [7]. Given a sequence of features, the
Viterbi algorithm produces the sequence of states most likely to
have generated these features. The state sequence is time-
aligned with the feature sequence, so that the video is
segmented according to the times corresponding to shots, cuts,
fades, dissolves, pans, and zooms.

4. Experiments

4.1 HMM vs Manual Threshold

The algorithm has been tested on portions of a video data base
containing a variety of video, including television shows, news,
movies, commercials, and cartoons [2]. The training data for our
experiments was a six-minute cartoon with 64 cuts, 4 dissolves,
and 12 fades, for a total of 80 transitions. The results are given
using three measures.  Recall is the percentage of shot
boundaries that were correctly detected by the model.  Precision
is the percentage of claimed shot boundaries that are actually
shot boundaries.  Classify is the percentage of shot boundaries
that are correctly labeled (e.g., cut or fade). We started with a
single video feature, the gray-scale histogram difference. The
first experiment used our video model without the pan and zoom
states.  The model was tested on the training data (Bugs), 30
minutes of a motion picture (Raiders), 30 minutes of a television
news program with commercials (CNN), and 30 minutes of a
television drama with commercials (Babylon).  Table 1 shows
the results of the model compared to using a simple threshold on
the histogram difference feature.  The threshold data results
from selecting a threshold that produces a recall value close to
that of the HMM. No classify data is given for the threshold
method, which is unable to label gradual transitions.

It is clear from this experiment that for a fixed recall, our model
gives higher precision than using a simple threshold selection.
In addition, it is able to classify transition types using the simple



histogram feature, and does not require tailoring to specific
videos. Other video features that are useful in classifying
gradual transitions would likely produce better results.

HMM Threshold

Data Set Recall Precision Classify Recall Precision

Bugs .950 .809 .950 .938 .636

Raiders .970 .793 .843 .964 .644

CNN .907 .829 .828 .902 .644

Babylon .928 .865 .878 .928 .727

Table 1: Comparison of HMM segmentation to threshold
methods for the image difference feature.

4.2 Addition of Audio and Motion Features

Our second experiment used a feature vector consisting of the
histogram feature and the audio feature combined with the video
model without the pan and zoom states.  Table 2 shows the
results of applying this model to the training data and the
Raiders data set.  The model made use of the different audio
characteristics of action sequences and gradual transitions to do
a better job of classifying transitions than the simple image
feature at the cost of slightly worse recall and precision.

Our third experiment used the full video model and a feature
vector consisting of the histogram feature and the motion
features.  Table 2 shows the results of applying this model to the
training data and the Raiders data set.  This model was able to
use the motion feature to avoid mistaking pans and zooms for
gradual transitions and therefore produced a higher precision
measure.

With Audio Feature With Motion Feature

Data set Recall Prec
ision

Class
ify

Recall Prec
ision

Class
ify

Bugs .963 .778 .963 .950 .873 .925

Raiders .964 .708 .901 .970 .843 .828

Table 2: HMM segmentation results for image and audio
and image and motion features.

5. SUMMARY

Use of hidden Markov models for video segmentation eliminates
two standard problems. The first is the setting of thresholds for
the frame-to-frame distances for detecting cuts and gradual
transitions. In the past, this has been done manually. However,
with HMMs these parameters can be learned automatically. The
second problem is how to use multiple features, such as
histogram differences, motion vectors, and audio differences, to
aid in the video segmentation. The HMM framework allows any
number of features to be included in a feature vector. Our
results show that the HMM segmentation algorithm gives higher
precision for similar recall values when used with the image

difference feature alone. Additional features allow tradeoff
between precision and classification accuracy.

While these techniques have been tested on a database of
produced video, they also apply to raw, unedited video. We are
applying this method to segment informal video taken to record
usage studies and meetings [11]. While the detection of fades
and dissolves does not apply to this type of data, the explicit
modeling of pans and zooms allows segmentation based on
camera movement.

6. REFERENCES
[1] Arman, F., Hsu, A., Chiu, M-Y., “Image Processing on Encoded

Video Sequences”, Multimedia Systems (1994) Vol. 1, No. 5, pp.
211-219.

[2] Boreczky, J. and Rowe, L., “Comparison of Video Shot Boundary
Detection Techniques”, Proc.SPIE Conference on Storage and
Retrieval for Still Image and Video Databases IV, San Jose, CA,
February, 1996, pp. 170-179.

[3] Gish, H., Siu, M., Rohlicek, R. “Segmentation of Speakers for Speech
Recognition and Speaker Identification”, Proc. Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 2, IEEE, Toronto, Canada, May
1991, pp. 873-876.

[4] Kasturi, R., Jain, R., “Dynamic Vision”, in Computer Vision:
Principles, Kasturi R., Jain R., Editors, IEEE Computer Society
Press, Washington, 1991.

[5] Nam, J., Cetin, E., and Tewfik, A. “Speaker Identification and Video
Analysis for Hierarchical Video Shot Classification”, Proc. Int. Conf.
Image Processing, Santa Barbara, CA, October, 1997.

[6] Phillips, M. and Wolf, W., "Video Segmentation Techniques for
News," in Multimedia Storage and Archiving Systems, C.-C. Jay Kuo,
Editor, Proc. SPIE 2916, 243-251 (1996).

[7] Rabiner, L, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition”, Proc. IEEE, vol. 77, No. 2,
February 1989, pp. 257-285.

[8] Saraceno, C. and Leonardi, R., “Audio as a Support to Scene Change
Detection and Characterization of Video Sequences”, Proc. Int. Conf.
Acoustics, Speech, and Signal Processing, Munich, Germany, April
1997, pp. 2597-2600.

[9] Shahraray, B., “Scene Change Detection and Content-Based Sampling
of Video Sequences”, in Digital Video Compression: Algorithms and
Technologies, Rodriguez, Safranek, Delp, Eds., Proc. SPIE 2419, Feb
1995, pp. 2-13.

[10] Wilcox, L., Kimber, D., Chen, F., “Audio Indexing Using Speaker
Identification”, Proc. SPIE Conference on Automatic Systems for the
Inspection and Identification of Humans, San Diego, CA, July, 1994,
pp. 149-157.

[11] Wilcox, L, and Boreczky, J., “Annotation and Segmention in
Multimedia Indexing and Retrieval”, to appear in HICSS, Jan 1998.

[12] Wolf, W., “Hidden Markov Model Parsing of Video Programs”, Proc.
Int. Conf. Acoustics, Speech, and Signal Processing, Munich,
Germany, April 1997, pp. 2609-2611.

[13] Zabih, R., Miller, J., Mai, K., “A Feature-based Algorithm for
Detecting and Classifying Scene Breaks”, Proc. ACM Multimedia 95,
San Fransisco, CA, November, 1995, pp. 189-200.

[14] Zhang, H.J., Kankanhalli, A., Smoliar, S.W., “Automatic Partitioning
of Full-motion Video”, Multimedia Systems (1993) Vol. 1, No. 1, pp.
10-28.


