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ABSTRACT

This paper presents a theory for the exact and the pth or-
der equalization or linearization of nonlinear systems with
known recursive or nonrecursive polynomial input-output
relationships. The equalizing and linearizing �lters have
simple and computationally e�cient structures. An exper-
imental result that illustrates the good properties of the
technique we propose is also included in this paper.

1. INTRODUCTION

Equalization of linear systems has been studied for several
years. Many real channels, however, possess non-negligible
nonlinearities that make it impossible for linear equalization
procedures to provide acceptable results. Examples of real
world systems in which nonlinear e�ects are present include
satellite communication channels, voiceband data transmis-
sion systems, high density magnetic recordings, high den-
sity optical systems and loudspeaker systems. This paper
presents a theory for the exact and the pth order equal-
ization or linearization of nonlinear systems with known
polynomial input-output relationships.

De�nition 1 A nonlinear equalizer is a �lter which, when
connected in cascade before or after a nonlinear system, re-
sults in an overall system whose characteristics corresponds
to those of an identity system in the band of frequencies and
in the range of input signal amplitudes of interest.

De�nition 2 A linearizer is a �lter which, when connected
in cascade before or after the unknown system, results in an
overall system whose characteristics correspond to those of
a linear system in the frequency band and in the range of
input signal amplitudes of interest.

When an equalizer (linearizer) is connected before a
nonlinear system, it is called a pre-equalizer (pre-linearizer).
When it is connected after a nonlinear system, it is called
a post-equalizer (post-linearizer).

Many equalization/linearization procedures are avail-
able in the literature [1, 2, 4, 5]. Many such techniques
identify an approximate, truncated Volterra system to per-
form the equalization. One exception to this framework is
[5], in which a method for the blind equalization of trun-
cated Volterra channels by means of a bank of linear �l-
ters is presented. Even though we do not consider blind
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equalization in this paper, our approach is capable of ex-
act pre- and post- equalization or linearization of nonlinear
channels. We note that the method in [5] cannot be used
for pre-equalization of nonlinear systems. In addition, our
method is useful for a much larger class of channel models.

2. IDEAL EQUALIZATION/LINEARIZATION

We consider the following system model:

y(n) =
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The theory we present is applicable to a larger class of non-
linear systems including recursive polynomial models. How-
ever, we restrict the discussions to the above model for ease
of presentation. The inverse of the system in (1) is given
by [3]
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An explicit expression for the output of the inverse system
as above is possible because the system model does not
depend on the input sample x(n) in a nonlinear manner.
An implicit expression for the inverse of the more general
system
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if it exists, is given by
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In what follows, we employ the compact expression

y(n) = A(q)x(n) +N
�
x(n)

�
(5)



to represent the systems in (1) and (3). In the above equa-
tion, q�1 is the delay operator, x(n) and y(n) are the input
and output signals, respectively,
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and

N
�
x(n)

�
=

LX
k=2

NX
i1=r

: : :

NX
ik=ik�1

hi1:::ikx(n� i1) � : : : �x(n� ik)

(7)
If r = 1, (5) corresponds to the system in (1), while if
r = 0, (5) corresponds to the system in (3). Using the above
notation, we can express the input-output relationship of
the inverse of the system in (5) as

A(q)w(n) = u(n)�N
�
w(n)

�
; (8)

where u(n) and w(n) are the input and output signals, re-
spectively of the inverse system. We can also express the
output signal explicitly as

w(n) = A�1(q)u(n)� A�1(q)N
�
w(n)

�
: (9)

Figure 1 shows a block diagram for the recursive poly-
nomial �lter in (9). We note that the overall system can be
described as a feedback system in which the feedback loop
contains a nonlinear operator and the feedforward loop con-
tains the inverse of the linear component of the nonlinear
�lter. The inverse system in (5) will not be stable unless
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Figure 1: The ideal equalizer.

the linear part of the unknown system model has minimum
phase characteristics. When A(q) represents a minimum
phase system, the system in (9) can be shown to operate
in a stable manner whenever the input signal is su�ciently
small. The bound on the input signal depends on the zeros
of A(q) and on the coe�cients of N [u(n)] [7]. Thus, our in-
verse system will equalize the above nonlinear system only
in the range of amplitudes for which it is stable.

In many applications, we are interested in equalizing the
unknown system only in a certain band of frequencies. For
example it may be known that the input signal is band-
limited. Such an equalizer may be designed by replacing
A�1 in Figure 1 with another linear �lter such that the over-
all system response corresponds to that of a linear system
with speci�ed amplitude and phase response and possibly
zero response outside the band of interest. The following
two theorems characterize the structure of the post and
pre-equalizers for a speci�c range of frequencies.

Theorem 1 If the input signal is band-limited with spec-
trum inside a certain band B, a post-equalizer in the band
B for the system of (5) is given by

w(n) = ~A�1(q)u(n)� ~A�1(q)N
�
w(n)

�
; (10)

where ~A�1(q) is the linear equalizer of the system A(q) in
the band B and has zero response outside the band.

Proof: We consider the post-equalization of the nonlinear
system in (5) in the band B and the elimination of all other
frequencies at the output. For this purpose, we �rst cas-
cade the system in (5) with the linear �lter ~A�1(q) and then
equalize the resulting nonlinear system. Cascading (5) with

the linear system ~A�1(q) eliminates all frequencies outside
the band B. The resulting system has input-output rela-
tionship

z(n) = ~A�1(q)A(q)x(n) + ~A�1(q)N [x(n)]: (11)

Since x(n) has frequency components only on B, the above
system is equivalent to

z(n) = x(n) + ~A�1(q)N [x(n)]; (12)

whose post-inverse system is given by

w(n) = z(n)� ~A�1(q)N [w(n)]: (13)

Since z(n) is band-limited to the band B, the output of the
system in (13) is also band-limited to the band B. Thus,

the cascade of z(n) = ~A�1(q)u(n) (where we assume u(n) =
y(n)) and the system in (13) is the ideal equalizer for the
system in (5) in the band B. It is trivial to prove that this

system is the same of equation (10).

Theorem 2 A pre-equalizer in the band B for the system
of (5) is given by

w(n) = ~A�1(q)u(n)� ~A�1(q)N
�
w(n)

�
; (14)

where ~A�1(q) is the linear equalizer of the system A(q) in
the band B and has zero response outside the band.

The proof is similar to that for Theorem 1. For the case of
the pre-equalizer, we do not require that the input signal is
band-limited. However, we are now unable to compensate
for the frequency components of y(n) that fall outside the
band B. We also note that the equalizer in (10) and (14)
is realizable for the system in (1), but not for the system
in (3).

2.1. The ideal pre- and post-linearizers

In this paper, the linear system that results from the lin-
earization process will always have transfer function equal
to the linear part of the nonlinear system that is linearized.
The ideal pre-linearizer (post-linearizer) is the �lter that
pre-linearizes (post-linearizes) the nonlinear system in all
the frequency domain.

The ideal pre-linearizing �lter for the system in (5) is
given by

w(n) = v(n)�A�1(q)N
�
w(n)

�
; (15)

where v(n) and w(n) are the input and the output signals,
respectively.



Proof: By substituting the input-output relationship u(n) =
A(q)v(n) in (7) we obtain

A(q)w(n) = A(q)v(n)�N
�
w(n)

�
; (16)

which is the same system of (15).

In a similar manner, we can prove that the ideal post-
linearizing �lter for (5) is given by

w(n) = v(n)�N
�
A�1(q)w(n)

�
: (17)

Figures 2 illustrates the block diagram of the ideal pre-
linearizer. A similar block diagram can be drawn for the
ideal post-linearizer. The following results can be proved in
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Figure 2: The ideal pre-linearizer.

a manner similar to that employed for proving Theorem 1.

Theorem 3 If the input signal of the system (5) is band-
limited with spectrum inside a certain band B and if ~A�1(q)
is the linear equalizer of the system A(q) in the band B
and has zero response outside this band, the post-linearizing
�lter in the band B for the system of (5) is given by the
input-output relationship

w(n) = v(n)� ~A�1(q)N
�
w(n)

�
: (18)

Theorem 4 If ~A�1(q) is is as described in Theorem 3, the
pre-linearizing �lter in the band B for the system in (5) is
given by the input-output relationship

w(n) = v(n)�N
�
~A�1(q)w(n)

�
: (19)

3. pTH ORDER EQUALIZATION

The ideal equalizers and linearizers of the previous section
may not always be realizable. For example when r = 0
in (5), the equalizers and linearizers do not have an explicit
input-output relationship. Furthermore, because of the re-
cursive structure of the equalizers/linearizers, these �lters
may also be unstable. In what follows, we present a the-
ory for the pth order equalization/linearization of nonlinear
systems [9].

De�nition 3 A pth order equalizer is a �lter which, when
connected in cascade before or after a nonlinear system, re-
sults in an overall system whose characteristics, in the band
of frequencies and in the range of input signal amplitudes of
interest, corresponds to those of a parallel connection of an
identity system and a nonlinear component whose Volterra
kernels of order smaller than or equal to p are all zero.

De�nition 4 A pth order linearizer is a �lter which, when
connected in cascade before or after a nonlinear system, re-
sults in an overall system whose characteristics, in the band
of frequencies and in the range of input signal amplitudes
of interest, correspond to those of a parallel connection of
a linear system and a nonlinear component whose Volterra
kernels of order smaller than or equal to p are all zero.

Theorem 5 If the system of (8) is stable, the sequence of
systems de�ned by

w1(n) = A�1(q)u(n); (20)

wp(n) = A�1(q)u(n)�A�1(q)N
�
wp�1(n)

�
(21)

converge to the system in (8) when p tends to in�nity. More-
over, the system in (21) is a generalized pth order inverse
of the system in (5) in the sense of Sarti and Pupolin [8].

Proof: We prove by induction that (21) is the p-th order
inverse of (5). Let us process the output of the system
of (5) with the system de�ned by (21). By considering
u(n) = y(n), for p = 1 we obtain the following input-output
relationship:

w1(n) = x(n) +A�1(q)N
�
x(n)

�
;

= x(n) + T1(n); (22)

where T1(n) is a Volterra operator of order greater than
1. This proves that w1(n) is the output of a �rst order
inverse in the sense of Sarti and Pupolin. Let us suppose
that wp(n) is the output of a pth order inverse, i.e.,

wp(n) = x(n) + Tp(n) (23)

where Tp(n) is a Volterra operator of order greater than p.
We want to prove that the system de�ned by

wp+1(n) = A�1(q)u(n) �A�1(q)N
�
wp(n)

�
(24)

is a (p + 1)th order inverse of (5). By substituting (5)
and (23) in (24), we have

wp+1(n) = x(n) + A�1(q)N
�
x(n)

�

�A�1(q)N
�
x(n) + Tp(n)

�

= x(n) + A�1(q)N
�
x(n)

�

�A�1(q)N
�
x(n)] + Tp+1(n); (25)

where Tp+1 is an operator of order greater than p+1 and we
have taken into account the fact that N [�] is an operator of
order greater than 1. Since the system in (8) is the inverse
of (5) and we have shown that the sequence of systems
de�ned by (20)-(21) de�ne pth order inverses of (5), the
sequence of systems (20)-(21) will converge to (8) if the

system (8) is stable.
The sequence (20)-(21) corresponds to a systolic cas-

cade of cells. Thus, the pth order equalizer can be easily
implemented using VLSI circuits. Furthermore, each cell
is always realizable while we recall that the ideal equalizer
is not realizable for the system in (3). The block diagram
of a pre-equalizer cell is shown in Figure 4. Extensions of
the pth order equalizer/linearizer to the cases considered in
Theorems 1{4 are possible. Due to space limitations, such
a discussion is not included here.

4. AN EXPERIMENTAL RESULT

In this example, we consider the linearization of the non-
linearities associated with a synthetic loudspeaker using the
pth order linearizer of Figure 4. Previous work [4] has shown
that loudspeaker nonlinearities can be e�ciently modelled
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with good accuracy using low-order, truncated Volterra sys-
tems. The loudspeaker in our experiment was modelled us-
ing a quadratic �lter with one hundred linear coe�cients
and a forty-sample memory for the second-order compo-
nent. The second-order harmonic distortion of the system
is shown in Figure 5. Since the distortions were primarily
in the range

�
0; fN=3

�
Hz., where fN denotes the Nyquist

frequency, we employed the system of Figure 3 to perform
a pth order linearization. The upper branch of the system
contained a PCAS lowpass �lter [6] with cut-o� frequency
fN=3. The output of the lowpass �lter was subsampled by
a factor three. The parameters of the loudspeaker were
estimated using a quadratic �lter with 51-sample memory
length for the linear component and 40-sample memory for
the second-order nonlinearity from subsampled versions of
the input to the loudspeaker and its output in the presence
of uncorrelated, 30 dB measurement noise. The estimated
model was then used to pre-linearize the system using sec-
ond, third, fourth and �fth order linearizers.

Figure 5 also shows the second-order harmonic distor-
tion measured at the output of the linearized systems. We
note that the second-order distortion is the smallest in the
case of the second-order linearizer. This linearizer is suf-
�cient to correct for the second-order distortions and it
produces the most compact spectrum for the predistorted
signal. The third-order linearizer exhibits a higher second-
order distortion in this experiment. This is due to model
mismatch, our approximations and the wider band of the
predistorted signal whose intermodulation contributions al-
ter the amplitude of the fundamental frequency compo-
nents. The higher-order linearizers exhibit comparable second-
order distortions to the second-order linearizer. The im-
provement due to the use of the linearizer is evident from
all our experiments.

5. CONCLUDING REMARKS

This paper presented a theory for the exact and the pth or-
der equalization or linearization of nonlinear systems with
known polynomial input-output relationships. An attrac-
tive aspect of the results in the paper is that the equalizers
and linearizers can be implemented cascading modular and
stable components. Experiments indicate that the method
works well in situations where the parameters of the non-

linear system must be estimated.
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Figure 5: Second-order distortion measured in the experi-
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