
EQUIVARIANT ALGORITHMS FOR SELECTIVE TRANSMISSION

S.C. Douglas

Department of Electrical Engineering
University of Utah

Salt Lake City, UT 84112 USA

ABSTRACT

In this paper, we consider the problem of selective
transmission{the dual of the blind source separation
task{in which a set of independent source signals
are adaptively premixed prior to a non-dispersive
physical mixing process so that each source can
be independently monitored in the far �eld. We
derive a stochastic gradient algorithm for itera-
tively-estimating the premixing matrix in the se-
lective transmission problem, and through a simple
modi�cation, we obtain a second algorithm whose
performance is equivariant with respect to the chan-
nel's mixing characteristics. We also describe an ap-
proximate version of the equivariant algorithm and
other implementation issues. Simulations indicate
the useful behavior of the premixing algorithms for
selective transmission.

1. INTRODUCTION

In blind source separation of instantaneous mixtures, a
set of m independent source signals are linearly-mixed by
an unknown channel before being sensed by n sensors,
and one desires to �nd an (m � n)-dimensional separat-
ing matrix to linearly recombine these sensor signals and
recover the individual sources. Fig. 1(a) shows the struc-
ture of the source separation task, in which the vectors
s(k) = [s1(k) � � � sm(k)]

T , x(k) = [x1(k) � � �xn(k)]
T , and

y(k) = [y1(k) � � � ym(k)]
T contain samples of the source,

sensor, and separated signals, respectively, and H and
W(k) are the (n � m)-dimensional mixing and (m � n)-
dimensional separating matrices, respectively. Much re-
search e�ort has gone into �nding simple, iterative algo-
rithms for estimating the separating matrix W(k) adap-
tively [1]{[4]. Of particular note are the algorithms de-
scribed in [3, 4] whose adaptation characteristics are in-
dependent of the mixing matrix H. Recently, such algo-
rithms have been extended to the multichannel deconvolu-
tion problem with some success [5].
In this paper, we consider the dual of blind source sep-

aration, a problem known as selective transmission [6, 7].
Fig. 1(b) shows the structure of this task. In this case, the
m independent source signals in s(k) are premixed by an
(n � m)-dimensional matrix W(k) to produce a set of n
transmitted signals in the vector

t(k) = W(k)s(k); (1)

0This material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. MIP-9501680.
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Fig. 1: Block diagrams for the (a) source separation and
(b) selective transmission tasks.

and these signals are sent to a physical mixing system rep-
resented by the (m�n) matrix H. The received signals are
expressed by the vector r(k) = [r1(k) � � � rm(k)]T as

r(k) = Ht(k) = HW(k)s(k): (2)

The task is to iteratively adjust W(k) such that

lim
k!1

HW(k) = PD; (3)

where P is an (m � m)-dimensional permutation matrix
and D is a diagonal matrix of non-zero scaling factors dii,
1 � i � m. The solution in (3) is similar to that for the
source separation task. Unlike the source separation task,
however, it is possible to determine both the ordering and
scaling of the sources in r(k) because s(k) is known, such
that (3) is more general than necessary. Even so, we con-
sider (3) due to the useful algorithms that are obtained.
Moreover, it is a relatively-simple matter to reorder and
scale the transmitted source signals to obtain the desired
source with the desired amplitude at the desired receiver.
The selective transmission problem appears in communi-

cations, in which a base station wishes to selectively trans-
mit speci�c information to m di�erent stationary receivers
with �xed locations [6, 7]. In adaptive control, premixing
would enable a controller to decouple its e�ort at m sep-
arate spatial points, thus simplifying the control law [8].
Although it might appear that blind source separation al-
gorithms could be directly applied to the selective trans-
mission problem, the order reversal ofW(k)H and HW(k)
in Fig. 1(a) and (b) leads to subtle di�erences in the algo-
rithms for solving each problem. Moreover, while it is pos-
sible to estimate H explicitly and form its pseudo-inverse



directly, such a solution may not be viable due to numerical
and practical di�culties.
In this paper, we derive two stochastic gradient al-

gorithms for iteratively-estimating the premixing matrix
W(k) for selective transmission. Similar to blind source
separation techniques [3, 4], we provide a suitable algo-
rithm modi�cation that yields an equivariant algorithm
whose convergence behavior does not explicitly depend on
the form of H. Because implementing the equivariant algo-
rithm requires knowledge of H, we provide an approximate
on-line version of the algorithm, and we describe methods
for reordering and scaling the amplitudes of the source sig-
nals within the received signals near convergence. Simula-
tions are provided to show the fast convergence behavior of
the equivariant algorithm.

2. STOCHASTIC GRADIENT ALGORITHMS
FOR SELECTIVE TRANSMISSION

To determine an algorithm for adjusting W(k) for selec-
tive transmission, we consider cost functions that yield (3)
at their minima. In this regard, we consider one such cost
function that has proven to be useful in blind source sepa-
ration: the Kullback-Leibler divergence between the actual
and a parametric model of the source signal distributions
[9]. For selective transmission, the appropriate information-
theoretic cost function is

J (W) = � log pr(r); (4)

where the joint p.d.f. pr(r) of r(k) is related to the joint
p.d.f. ps(s) of s(k) by a linear transformation of variables.
An appropriate parametric model for pr(r) is given by

pr(r) = jdet(HW)j

mY
i=1

pi(ri); (5)

where pi(r) is the p.d.f. of the source signal at the ith re-
ceiver. Combining (4) and (5) in the case where m = n, we
obtain

J (W) = � log jdetHj � log j detWj �

mX
i=1

log pi(ri): (6)

To minimize J (W) in (6), we �rst consider a simple
stochastic gradient algorithm of the form

W(k+ 1) = W(k)� �(k)
@J (W(k))

@W
; (7)

where �(k) is a step size sequence. It can be shown that
@ log jdetWj=@W = W�T [3]. Di�erentiating the third
term on the RHS of (6), we obtain

�

@

mX
i=1

log pi(ri)

@wij

=

mX
l=1

hlifl(rl)sj; (8)

where we have de�ned fi(r) = �@ log pi(r)=@r. Thus, col-
lecting the update terms yields the algorithm as

W(k+ 1) =W(k) + �(k)
�
W

�T (k)�HT
f(r(k))sT (k

�
;) (9)

where f(r(k)) = [f1(r1(k)) � � � fm(rm(k))]
T .

Alternatively, we can derive an algorithm for adjusting
W(k) that minimizes the mean-squared error (MSE) be-
tween the source and received signals, since s(k) is known
at the transmitter. The associated instantaneous cost func-
tion is

�J (W) = jjejj2; e = s � r; (10)

and e is an m-dimensional vector of error signals. Following
a similar derivation, the resulting update is

W(k+ 1) = W(k) + �(k)HT
e(k)sT (k): (11)

The algorithms in (9) and (11) have several practical dis-
advantages. Firstly, they explicitly depend on the chan-
nel matrix H, which is unknown. Secondly, as is shown
via simulations, their convergence performances are highly-
sensitive to the form of H as well as to the scaling of the
sources in s(k). Finally, (9) requires the inverse of the pre-
mixing matrix, which is challenging to compute. In the
following two sections, we provide modi�cations to the al-
gorithm in (9) that overcome these limitations.

3. EQUIVARIANT ALGORITHMS FOR
SELECTIVE TRANSMISSION

Recent advances in blind source separation have uncov-
ered algorithms whose behaviors are independent of the
mixing process. This remarkable property is called equiv-
ariance [4]. An equivariant blind source separation algo-
rithm can be written in terms of the combined system
C(k) =W(k)H and the source signals in s(k), such that H

does not enter into the evolution of C(k). Such algorithms
can be obtained using either the relative gradient [4] or the
natural gradient [3, 10, 11] concepts. While these two con-
cepts di�er in general [12], they are identical in the case of
blind source separation.
In this section, we determine an equivariant algorithm

for selective transmission. For this derivation, we use the
methodology outlined in [5, 10] to determine the coe�-
cient updates. Consider the di�erential of the cost function
J (W) in (6), as given by

dJ (W) = J (W+ dW)�J (W): (12)

It can be shown that

dJ (W) = �tr[W�1dW] + f
T (r)dr; (13)

where f(r) is as de�ned previously and dr = HdWs. De�ne
the modi�ed coe�cient di�erential dX as

dX = W
�1dW: (14)

We can evaluate (13) in terms of dX as

dJ (W) = �tr[dX] + f
T (r)HWdXs: (15)

Due to the form of (14), dX describes an in�nitesimal
direction that is not the gradient of any well-de�ned surface.
Even so, it is useful to consider dX as a search direction
for minimizing J (W) when translated into the space of
premixing matrices W. Using (14) and (15), the proposed
algorithm for W(k) is

W(k+ 1) = W(k)� �(k)W(k)
@J (W(k))

@X
(16)

@J (W)

@X
= �I+W

T
H

T
f(r)sT : (17)



The proposed update is thus

W(k+ 1) =W(k)+�(k)W(k)
�
I�CT (k)f(r(k))sT (k

�
) (18)

where C(k), the combined premixing-channel matrix, is

C(k) = HW(k): (19)

Comparing (9) and (18), we see that the algorithm in
(18) could also be obtained using the rule

W(k+ 1) =W(k)� �(k)W(k)WT (k)
@J (W(k))

@W(k)
: (20)

Since W(k)WT (k) is always positive-de�nite when W(k)
is non-singular, (18) has the same local stability proper-
ties about a selective transmission solution as those of the
algorithm in (9) for small step size values.
The usefulness of (18) is seen if one considers the update

in the combined system matrix C(k). Premultiplying both
sides of (18) by H, we obtain

C(k+ 1)

= C(k) + �(k)C(k)
�
I�C

T (k)f(C(k)s(k))sT (k)
�
(21)

which does not explicitly depend on H. This result proves
that the algorithm in (18) is equivariant. The algorithm
in (18) also has the added bene�t that the matrix inverse
W�T (k) is no longer required. Moreover, (18) can be ap-
plied when m � n, in which case W(k) lies in the column
space of W(0) for all k [13].
Although one could apply the modi�ed update in (20) to

the MSE cost function in (10), simulations of the resulting
algorithm indicate that it can converge to spurious local
minima in which HW(k) has one or more zero eigenvalues.
By contrast, (18) never converged to such minima in any
of our extensive tests, indicating that the algorithm shares
the apparent robust behavior of similar blind source separa-
tion algorithms. While these behaviors are currently under
study, they suggest that thorough testing of an algorithm
under di�erent signal and channel conditions is necessary
when employing the modi�cation in (20) to any particular
cost function for selective transmission.

4. IMPLEMENTATION ISSUES

As in blind source separation, the local stability of the
algorithm in (18) about any coe�cient solution satisfying
(3) depends on the nonlinearities in f(r) and on the the
p.d.f.'s of the source signals fsi(k)g. In [13], the stability
conditions for (18) are derived and are shown to be similar
to those of the dual algorithm for blind source separation
in [3, 10]. Thus, one can use the same nonlinearity f(r) for
each entry of f(r) for certain classes of source distributions.
For example, if all of the sources have a negative kurtosis,
then f(r) = r3 will yield a stable selective transmission
solution for W(k).
Considering (21), it is impossible to scale each of the

sources in s(k) arbitrarily and then absorb this scaling into
the combined system matrix C(k). Therefore, unlike that of
blind source separation algorithms, the performance of (18)
depends on the absolute scales of the sources. To obtain
better convergence performance, we propose the following
signal normalization scheme:

si(k) = bsi(k)= (b�i(k)) (22)b�i(k) = (1� �)b�i(k) + �bsi(k)f(bsi(k)); (23)

where bsi(k) are the original source signals before scaling, �
is a small constant, and  (s) is the inverse of the function
sf(s) for s � 0. With this signal normalization, the am-
plitudes of the signals in r(k) are the same on average as
those in s(k) at convergence, i.e., the absolute values of the
scaling factors djj of D in (3) are unity-valued. With this
choice, excellent convergence behavior for (18) is provided,
independently of the choice of W(0).
In practice, individual amplitude control over each of the

m received signals is desired. Such control can be provided
without changing the equivariant performance of the system
by replacing f(r(k)) in (18) with AT f(r(k)), where A is a
diagonal matrix of amplitudes aii. It can be shown that
such an algorithm depends only on the combined system
matrix AHW(k), and AHW(k) approximately converges
to PJ if (22){(23) is used, where J is a diagonal matrix of
�1 values. Therefore, the amplitude of the source at the
ith receiver is scaled by a�1ii at convergence.
The algorithm in (18) employs the unknown mixing chan-

nel H. While H could be estimated prior to the application
of (18), such a strategy defeats the purpose of the selective
transmission task. Since the combined premixing-channel
matrix C(k) appears in (18), we can develop a simple tech-
nique for estimating this matrix for use within (18). If the
signal scaling method in (22){(23) is used, then a simple
estimator for C(k) is

bC(k) = (1� �)bC(k � 1) + �r(k)f(sT (k)); (24)

where � is a small constant. In practice, bC(k) is used

in place of C(k) in (18). Since bC(k) is not exactly equal
to C(k), the performance of this approximate algorithm is
somewhat di�erent from that of the equivariant algorithm
in (18), as is shown via simulations.
For the selective transmission task, one must broadcast

a speci�c source to a particular receiver. The algorithm in
(18) does not guarantee a speci�c ordering or the proper

signs of the source signals in r(k). However, since bC(k)
in (24) converges to PJ if the signal scaling in (22){(23) is

used, we can use bC(k) to reorder and change the signs of the

source signals prior to the premixing process. De�ne bP(k)
as the matrix obtained by replacing each bcij(k) in bC(k) by
either 1, 0, or �1, whichever is closest in value. By usingbPT (k)s(k) in place of s(k) within the system, we obtain the
desired source with the desired sign at the desired receiver.
When the same nonlinearity is used for each entry of f(r(k))
and the scaling method in (22){(23) is employed, no other
change to the algorithm is required. In fact, the order and
signs of the sources can be arbitrarily switched at will in
this case without any adverse e�ects to the convergence
behavior of the system.

5. SIMULATIONS

We now explore the behaviors of the various algorithms
via simulation. For the examples in this section, we gener-
ate three random i.i.d. source signals fsi(k)g with speci�c
negative-kurtosis distributions, and fi(r) = r3 in these ex-
amples. The behaviors of the algorithms in (9), (11), (18){
(19), and f(18), (24)g are simulated for di�erent choices of
H. In each case, we calculate the performance factor


(k) = min
fi1;i2 ;i3g2f1;2;3g

1

3

3X
l=1

3X
j=1;j 6=il

c2ilj(k)

c2ilil (k)
; (25)
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Fig. 2: Convergence of the average value of 
(k) for the four
algorithms in the �rst example.

where i1 6= i2 6= i3 6= i1, as averaged over 100 di�erent
simulation runs. We select W(0) as a random orthogonal
matrix with eigenvalues equal to � for each simulation run.
In the �rst example, each of the sources is binary-f�1g-

distributed, so that source scaling is not required. The
channel matrix H for these simulations was chosen as

H =

"
0:3 0:4 0:4

�0:1 �0:2 0:2
�0:3 �0:4 �0:5

#
: (26)

The condition number of HHT in this case is 18924, indi-
cating a severely ill-conditioned channel. For (9), (18){(19),
and f(18), (24)g, step sizes of 0:05, 0:02 and 0:0085 are cho-
sen such that 
(k) � 0:0055 in steady-state in each case, and
for (11), �(k) = 0:7 is chosen to provide the fastest conver-
gence without instability. Fig. 2 shows the performance of
each algorithm in this case, where � = 0:025 and � = 0:5.
It is seen that the equivariant algorithm has the best per-
formance, followed by the approximate equivariant and the
two stochastic gradient algorithms, respectively. Moreover,

using bC(k) in place of C(k) in (18) does not signi�cantly
degrade this algorithm's performance.
We now explore the behavior of f(18), (24)g when the

signal scaling in (22){(23) is employed. In this case, we
generate bs1(k) and bs2(k) as i.i.d. binary-f�1g and uniform-
[�1; 1] random variables, respectively, and the distribution
of the i.i.d. signal bs3(k) is bp3(s) = 1 � jsj for jsj < 1 and
is zero otherwise. The premixing matrix H employed here
is taken from [14], where the condition number of HHT is
422.4. Fig. 3 shows the evolution of the average value of
the performance factor for three versions of f(18), (24)g,
where � = 0:01, � = 0:03, � = 1, and �(k) = 0:01. In
addition to the original algorithm, we show the behavior of
the algorithm when f(r(k)) is replaced by AT f(r(k)) with
A = diagf1; 0:1; 0:01g, and we show the behavior of the
algorithm where we have randomly-selected the order of
the normalized sources si(k) within s(k) at every time step.
In this case, the performance of the approximate algorithm
is found to be nearly independent of the amplitudes of the
nonlinearities in f(r(k)) as well as to the order of the source
signals so long as the signal scaling in (22){(23) is employed.
Moreover, using AT f(r(k)) in the updates caused the source
signals to have amplitudes of 1, 10, and 100, respectively,
at the three receivers, as predicted.
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Fig. 3: Convergence of the average value of 
(k) for the
three algorithm versions in the second example.

6. CONCLUSIONS

This paper describes an equivariant algorithm for selec-
tive transmission, the dual of the blind source separation
task. We have also described an approximate equivari-
ant algorithm that does not require exact knowledge of the
channel to operate, and we have addressed other practical
implementation issues. Simulations have been provided to
indicate the useful behavior of the algorithms. Additional
details about the algorithms, as well as a formal stability
analysis, is provided in [13].
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