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ABSTRACT

A method for incorporating anatomical MRI boundary side
information into penalized maximum likelihood(PML) Emis-
sion Computed Tomography (ECT) image reconstructions
using a set of averaged Gibbs weights was proposed in [6].
A quadratic penalty based on Gibbs weights was used to
enforce smoothness constraints everywhere in the image ex-
cept across the estimated boundary of ROI. In this method-
ology, a limiting form of the posterior distribution of the
MRI boundary parameters was used to average the Gibbs
weights obtained as in [10]. There is an improvement in per-
formance over the method proposed in [10], when the vari-
ance of boundary estimates from the MRI data becomes sig-
nificant. Here, we present the empirical performance analy-
sis of the proposed method of averaged Gibbs weights.

1. INTRODUCTION

ECT plays an important role in functional imaging, where
the functional information of living organs are studied. This
is done by estimating the uptake of radio-tracer in the re-
gion of interest (ROI). However, ECT images have poor
resolution owing to trade-offs between detection sensitivity
and collimator resolution, limited photon rates and fluctua-
tions in photon statistics. Better estimates of the ROI can
be obtained using high resolution imaging modalities such
as magnetic resonance imaging (MRI) or X-ray computed
tomography (CT). In order to improve the resolution and to
get a reliable estimate of uptake in ROI, many researchers
(for example [5]) have proposed to use priors from MRI or
CT images.

The method proposed in [10, 11] incorporates anatom-
ical MRI boundary information into penalized likelihood
(PL) ECT image reconstructions. The PL uses a quadratic
penalty term based on Gibbs weights obtained from the MRI
prior. This smoothing penalty is spatially-variant and thus
improves the resolution, especially across the boundary. The
Gibbs weights thus obtained do not make any corrections
for the noise in boundary estimates. In other words, it uses
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the MRI prior “blindly”.
In contrast, the method in [6] uses an asymptotic marginal-

ization [8] to average the PL over a normal approximation
to the posterior distribution of the side information. This
underemphasizes the side information in regions where its
variance is high. A theorem from [6] gives the asymptotic
posterior distribution of the spline parameters to be a mul-
tivariate Gaussian centered at the boundary estimate�̂ and
the inverse of observed Fisher information as the covariance
matrix.The penalty thus obtained is non-polynomial and is
very computationally intensive. A simple penalty function
with averaging of weight maps is derived using a lower
bound on the resultant marginal by applying the Jensen’s
inequality.

In this paper, we show that this method of [6] can be in-
terpreted as a min-max optimal principle to average the side
information. We provide a quantitativecomparison between
performance of method [6] using empirical Fisher informa-
tion matrix versus the expected Fisher information matrix.
We illustrate and compare the aforementioned methods for
both hot and cold spot uptake estimations.

2. PRELIMINARY DETAILS

Let Y MRI represent the noisy NMR spin density image.
We model the MRI system as linear, spatially shift invari-
ant, with a symmetric Gaussian 2D impulse response and
with additive white Gaussian noise of variance�2n [2]. We
parametrize the closed boundary by a periodic B-spline model.
The boundary (̂�) is estimated by non-linear maximum like-
lihood estimation. This method of boundary extraction was
shown [11] to be approximately unbiased over a wide range
of SNR and was shown to achieve the CR lower bound on
attainable estimator variance for reasonable noise levels (�n
less than 15% of edge contrast).

Let Y E be the noisy (Poisson) ECT dataset of detected
photons and� be the unknown emission distribution. Then
the penalized likelihood is given by

J(�) = ln f(Y Ej�; �̂) � �R(�; �̂) (1)

The penaltyR(�; �̂) is quadratic and is given by

R(�; �̂) =
X
i;j

wij(�̂)(�i � �j)
2 (2)



wherewij are the Gibbs weights which are obtained through
the binary weight mapping scheme proposed in [10].

3. MIN-MAX THEORY

Let us assume that� is a Gibbs random field. Then the
probability distribution function (pdf) of� is of the form

f���(�) = � � exp (��R(�; �)) (3)

where� is a normalization constant. When� is known ex-
actly, the posterior mode (MAP) esimate of� is a function
of Y E andY MRI which achieves the minimum
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When� is unknown, we can either substitute the extracted
boundary (̂�), which is the maximum likelihood estimate of
�, or use the following min-max criterion: choose�̂ to min-
imize the maximum probability of error(i.e.) �̂ achieves
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This min-max problem can be shown [1] to be equivalent to

min
�̂��

Z
���
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 > �
�

~f (�) d�

where ~f (�) is a function of�, called theequalizer density
and can be derived as the solution to a related integral equa-
tion. Note that this objective function is equivalent to the
marginal probability of error under a stochastic model for�

having a pdf~f (�).
Assume thatY MRI andY E are conditionally indepen-

dent, given�. We can then show using a factorization prop-
erty that the min-max̂�maximizes a marginalized posterior

ln ~f(�jY E;Y MRI) = ln f(Y Ej�) + (a constant c) +

ln

Z
���

fexp (��R(�; �)) ~f (�jY MRI)d�
o

(4)

where
~f (�jY MRI) =

f���(Y MRI)R
f���(Y MRI) ~f (�) d�

We recognize (4) as a modified PML function for estimat-
ing �. The penalty term in (4) remains convex in�, but is
non-linear in weights!ij(�̂) and it requires a high dimen-
sional integration for every candidate value�̂ of �. We can
simplify this using the Jensen’s inequality which provides a
lower bound. By Jensen’s inequality,

E���jYMRI
[exp f��R(�; �)g] �exp

�
��E���jYMRI

[R(�; �)]
	

lnE���jYMRI
[exp f��R(�; �)g] � ��

X
ij

~wij(�̂)(�i � �j)
2

where

~wij(�̂) =

Z
wij(�̂) ~f (�jY MRI)d� (5)

are the smoothed weights. The smoothed weights are thus
obtained from the unsmoothed weightswij(�̂) through an
integral operator that is independent of�. The modified
PML is now

�̂ = argmax
���

8<
:ln f(Y Ej�)� �

X
ij

~wij(�̂)(�i � �j)
2

9=
;

The next step is to compute~f (�jY MRI). The following
theorem gives us an asymptotic form for the posterior dis-
tribution ~f (�jY MRI).

4. ASYMPTOTIC MARGINALIZATION

The following limit theorem can be shown using techniques
of [7] and [8].

Theorem 1 Assume thatf(Y MRIj�) is a smooth function
of � in the sense of satisfying the regularity conditions [7]
(p. 131) and thatf(�) is a smooth function in the neighbor-
hood of�̂. Then the maximum likelihood estimator�̂ is an
asymptotically consistent estimator of� 2 <p

E���

h
k�̂ � �k2

i
= � ! 0

and

f(�jY MRI) =

��� ^F �̂��

���1=2
(
p
2�)

p � exp
n
�1

2
(� � �̂)T F̂

�̂��
(� � �̂)

o

� (1 +O(�)) (6)

whereF̂
�̂��

is the observed [3] Fisher information matrix

F̂
�̂��
= �r2

�̂���̂��̂���
ln f(�jY MRI):

We observe that the mean of this asymptotic distribution is
the maximum likelihood estimate of� and that the asymp-
totic posterior distributionf(�jY MRI) is independent of the
explicit form of the prior densityf(�). When the factoriza-
tion identity is valid, (6) can be shown to be identical to the
profile posterior approximation proposed in [9].

5. RESULTS

We compare the reconstructed images using the “unsmoothed
weights”wij, the averaged weights~wij and the “ideal” weights
extracted from noiseless MRI image. The Gibbs weights
wij were obtained through binary weight mapping described
in [10], which assigns unity weights to neighbor pixel pairs
and zero weights otherwise. Second order neighborhood
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Figure 1: (a) True Emission phantom. (b) FBP. (c) No MRI side information . (d) Unsmoothed weights (� = 1; �n = 0:36).

relations were considered. A modified version of PML-
SAGE3 [4] algorithm was used to maximize the PL objec-
tive.

(a) (b)

Figure 2: (a) Smoothed weights without leakage prevention
boundary . (b) Smoothed weights with leakage prevention
boundary (� = 1; �n = 0:36).

The true cold-spot phantom contains a background el-
lipse with major and minor axes 27,19 pixels respectively
and centered at (-10,-5). The ROI is represented by a cold
spot ellipse with major and minor axes 6,4 pixels respec-
tively. Identical contrast of 6 units (3 for hot spot) was used
for both MRI and ECT images. The ROI was chosen to have
an intensity of -6, 6 units respectivley for MRI and ECT im-
ages (6, 9 for hot spot). The parameter�s of the symmetric
Gaussian spatial blurring function used to model the MRI
scanner was 0.75 (15% of average radius of ROI). A 16-
knot B-spline model was used to parametrize the boundary.
The ECT data with a total of a million counts was sampled
by a parallel beam tomograph corresponding to PET pro-
jections over 64 radial bins, and 60 equispaced projection
angles over180o. Poisson noise was added and 15% ran-
dom coincidences were added.

Figure (1) shows the true cold-spot phantom and the re-
constructed image using FBP, no side information and un-
smoothed weights for�n = 0:36 (6% of contrast). Figure
(2) shows the corresponding reconstruction for smoothed
weights. Since the smoothed weights introduce neighbors to
be connected across the boundary (hence leakage, as in (a)),
we hard limited the weights to zero at the boundary which
surrounds the pixels that are likely to be atleast 50% in the
interior. This preserves the overall intensity level within
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Figure 3: % Std.Vs % Bias of mean uptake for various
� 2 (2�7; 215) for the cold spot phantom.

the ROI and lowers the bias of the uptake estimate. Figure
(3) shows the bias-variance trade-off curve of the estimated
mean uptake for�n = 0:36 for the cold-spot phantom.
This was obtained from 400 realizations of both simulated
noisy MRI and PET data. We observe that the smoothed
weights outperform the unsmoothed weights and the trade-
off curve for smoothed weights is close to the corresponding
curve for ideal side weights (no MRI noise). The plots are
shown for 3 kinds of Fisher information used, namely (a)
true (b) expected and (c) observed; (a) was obtained using
the true boundary and (b),(c) were obtained using the ex-
tracted boundary. We do not see much difference in perfor-
mance using these choices. Choice (a) is not practical since
we will never know the true boundary. Choice (b) can be
shown to have fewer computations than choice (c). So, in
practice, we can use the expected Fisher information and get
reasonable results. Plots (5), (4) show % bias and %std for
various MRI noise (�n). We also present the bias-variance
trade-off plot for the hot-spot phantom as in figure (6). We
get similar results.
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Figure 4: % Bias of mean uptakeVs MRI noise�n (large
�) for the cold spot phantom.

6. CONCLUDING REMARKS

We have shown that the variance corrected penalty obtained
using the averaged Gibbs weights by asymptotic marginal-
ization performs well for a reasonable range of MRI noise
for cold spot phantom. Similar results were achieved for a
hot spot phantom. We would like to extend this technique
to 3-D PET reconstructions by parametrizing the boundary
using a suitable model for the boundary.
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Figure 5: % Std. of mean uptakeVsMRI noise�n (large�)
for the cold spot phantom.
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Figure 6: % Std.Vs % Bias of mean uptake for various
� 2 (2�7; 215) for the hot spot phantom.


