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ABSTRACT

We present a new fast motion estimation method useful for high
speed video encoding. Most of the motion estimation methods for
video coding can be classified as Block Matching (BM) methods
or Pel Recursive (PR) methods . Majority of the current fast mo-
tion estimation methods belong to block matching category. These
methods try to reduce the number of search locations. Our pro-
posed method is based on the pel recursive formulation. However,
in order to achieve fast estimation, we operate on a block of pixels
using a Total Least Squares (TLS) based estimation scheme which
tries to estimate the true motion vector for each block. The major
advantages of the proposed method include very fast estimation,
almost constant time for motion estimation for all the video se-
quences, fractional pel accuracy, and better performance for noisy
sequences. We present extensive simulation results to illustrate the
performance of the proposed method.

1. INTRODUCTION

Motion estimation is the most time consuming operation in a typical
video encoder. In video encoding standards like MPEG1/MPEG2
and H.261/H.263, which use block based motion estimation, a Full
Search (FS) motion estimation takes up to 70-80 % of the encoding
time. Most of the motion estimation algorithms used in video en-
coding belong to either Block Matching Algorithms (BMAs) or Pel
Recursive Algorithms (PRAs). Majority of the current fast motion
estimation methods [13],[5] employ a block matching algorithm
and try to reduce the number of search locations in the search
range. These algorithms are either ad hoc or make an assumption
that the error increases monotonically from the best match location
and thus they often end up in finding a local optimum. Another
drawback of the matching algorithms is that they try to minimize
the selected error measure and hence result in better coding effi-
ciency even though the best match may not represent the actual
motion for the particular block. In certain applications like motion
compensated interpolation [3], it is more important to obtain the
true motion information instead of the best match. PRAs try to
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estimate the true motion at each pixel and usually result in lesser
coding efficiency than the BMAs.

Various fast block matching motion estimation algorithms such
as 2-D Logarithmic search, Three Step Search (TSS), Conju-
gate Direction Search (CDS), One-at-a-time Search (OTS), New
three Step Search (NTSS), Block Based Gradient Descent Search
(BBGDS) [13] exist. Each of these algorithms can be represented
as a point on the speedup versus PSNR plane. To compare our
proposed fast motion estimation method, we chose BBGDS al-
gorithm from this category of algorithms because of its superior
performance over others as reported in [13].

The Pel Recursive Algorithms use the temporal and spatial
difference between the pixel intensity in the previous and the cur-
rent frame to estimate the interframe translation for each pixel.
Previous approaches [14],[1] have mainly used a least squares,
Wiener-based, or gradient descent recursive method. The Wiener-
based and gradient descent methods operate on each pixel and use
a causal neighborhood around it.

In our proposed method for fast motion estimation we start
with the assumptions and methodology similar to the PRAs, but
we operate on a block of pixels and find a single motion vector
for each block. In order to achieve a fast motion estimation our
proposed method operates on a block basis and is not recursive.
We also propose to use the Total Least Squares (TLS) [8] esti-
mation scheme which is motivated by the use of the previously
reconstructed frame during the motion estimation. The TLS for-
mulation will also result in a robust motion estimation when the
video sequences are corrupted by noise. The motion estimation
algorithms use previously reconstructed reference frame instead
of the actual previous reference frame because the decoder only
has the previously decoded frame to do the motion compensation.
The previously reconstructed image can be considered as a “noisy"
estimate of the actual previous frame. Furthermore, neglecting the
higher order terms in the Taylor series expansion results in a trun-
cation error. The TLS formulation tries to find the “true” motion
in this case. It is known that if the errors are independent and
Gaussian distributed in both the observation and the measurement
data, then TLS solution is equivalent to the maximum likelihood
estimator [2]. With the use of TLS, the motion estimation tries to
find the true motion information and hence is expected to result
in a better performance for the motion compensated interpolation
type of applications. Also the obtained motion vector field from
the proposed method will be smoother than that from the match-
ing algorithms. Another motivation for using a pel recursive type



of estimation scheme is that the estimated motion vectors have a
fractional pel accuracy which can improve the performance of the
video encoding schemes significantly when combined with pixel
interpolation [6]. Half-pel accurate motion estimation for H.263
[9] has been the main reason for approximately 2 dB improvement
in performance as compared to H.261 encoding as reported in [7].

Amongst the main contribution of this paper is an attempt to
combine the best features of the block based methods, e.g. use
of a single motion vector for each block to reduce the coding
bits; without performing the actual block matching, and the best
features of pel recursive methods, e.g. fractional pel accuracy;
without performing any recursion in order to achieve a very fast
motion estimation. Majority of the current video coding standards
only support a block (macroblock) based motion estimation, hence
the proposed method is suitable for use with any of these standards.
The proposed fast motion estimation method results in an almost
constant time for motion estimation for videos with different type
of motion. To test the feasibility of this proposed approach we
have done extensive simulations.

2. FAST MOTION ESTIMATION USING TOTAL LEAST
SQUARES

The Pel Recursive Algorithms assume that image intensity in the
current frame at a pel location (x; y) is related to the intensity
from the previous frame by a displacement vector (d1; d2), i.e.
f(x; y; t) = f(x� d1; y� d2; t� ∆t), where t and t� ∆t are the
time instants corresponding to the current and the previous frame
respectively. Hence the frame difference FD(x; y) at a pel (x; y)
can be written as

FD(x; y) = f(x; y; t) � f(x; y; t� ∆t)
= f(x; y; t) � f(x+ d1; y + d2; t)

= f(x� d1; y � d2; t� ∆t) � f(x; y; t� ∆t) (1)

We do a Taylor series expansion for f(x� d1; y� d2; t� ∆t) and
obtain

FD(x; y) = �rxf(x; y; t� ∆t)d1 �ryf(x; y; t � ∆t)d2

+HOT; (2)

where HOT denotes the higher order terms of the Taylor series
expansion. Alternatively it is also possible to do a Taylor series
expansion for f(x+ d1; y+ d2; t). To achieve fast motion estima-
tion and to make the algorithm compatible with the current block
based motion vector supported video coding standards, we assume
that all the pixels in a block in the current frame have the same
displacement with respect to the previous frame. Thus the above
equation can be written together forN (commonly 16�16 = 256)
pixels in a block as"
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with HOT being an N � 1 vector.
To compute the gradients inN�2 data matrix on the right hand

side of Eq. (3) we use the previously reconstructed frame, which
is available at the decoder. Hence it can be considered as a noisy
measurement when we are interested in the actual motion between
the current and the previous frame. Also since we ignore the
HOT, the measurements are noisy. Similarly, the frame difference
values on the left hand side of the same equation may be corrupted
by sensor noise and also use the previously reconstructed frame.

Eq. (3) can thus be formulated as (b + @b) = (A + @A) � d.
To solve this equation for the motion vector d using the Total
Least Squares (TLS) method [8], we have to minimize the cost
C = jj@Ajj2 + jj@bjj2, where jj � jj corresponds to the Frobenius
norm. Figure 1 illustrates the difference between the use of the
Total Least Squares (TLS) cost function and the usual ordinary
Least Squares (LS) cost function. The problem is posed as the
familiar straight line fitting for the given set of data points. As
illustrated in Figure 1 (a) the LS cost function minimizes the cost
C1 = jj@yjj2. From the figure it is clear that the LS cost function
minimizes the sum of the squares of distances parallel to the y
axis from each point to the best fitting line. This assumes that
the error (noise) is confined to the yi observations and the data
points xi are error free (noiseless). The TLS formulation for line
fitting is more appropriate when both the yi and xi are erroneous
(noisy). From the Figure 1 (b), the cost minimized in this case
can be seen to be the sum of the squares of perpendicular distances
from each point to the best fitting line. Thus the cost function
minimized is C2 = jj@xjj2 + jj@yjj2, which for the motion vector
estimation problem becomes equal to the cost C given above. It
should be noted that we use the term “noisy" while modeling the
measurements and the observations in a rather broader manner
similar to [4]. Because of this formulation the proposed method
results in a robust estimation even when the video sequences are
actually corrupted by noise (sensor noise).
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Figure 1: (a) The Least Squares (LS) and (b) the Total Least
Squares (TLS) solution for the straight line fitting problem for
data points.

The above cost minimization leads to the TLS solution obtained
by taking the SVD of the augmented data matrix

P =
�
A j b

�
=U�VT (4)

whereU is an N � 3,V is a 3� 3 orthonormal matrix and� is a
3 � 3 diagonal matrix. The TLS solution is obtained by using the
last column ofV matrix, which spans the null space of augmented
data matrix. Writing the matrixV in partitioned form as

V =

h
V11 V12
V21 V22

i
; (5)

where V11 is a 2 � 2 sub matrix and V22 is a scalar. The TLS
solution for the motion vector d is given by d = �V12V

�1
22 .

Since the Taylor series expansion is used in our proposed
method, it is expected to be more accurate for small displace-
ments (motion vectors). But if the scene contains large motion
activity, a displaced frame difference (DFD) can be used instead
of using the frame difference (i.e. Taylor series expansion about
zero motion vector). With this modification, although the motion



vectors may be large, the differential motion vectors (actual motion
vectors minus the predicted motion vectors) will be small and can
be estimated using Taylor series expansion.

3. SIMULATION RESULTS

All the simulations were carried out on the standard H.263 test
sequences. We used the QCIF (176� 144) video sequences “Miss
America", “Trevor", “Suzie", and “Claire" at 30 fps. “Claire” test
sequence had 490 frames where as the other sequences had 150
frames each. The first set of simulations compared the performance
of the proposed motion estimation with the Full Search (FS), Block
Based Gradient Descent Search (BBGDS) fast motion estimation
and Wiener-based motion estimation. BBGDS was chosen for the
comparison because it is one of the most well known fast motion
estimation algorithms and also a comparison of its performance
with respect to the other fast algorithms shows it superiority over the
others [13]. Table 1 shows the performance comparison for various
algorithms with respect to the average PSNR. The search range
used was [-15,15]. It can be seen that TLS motion estimation has a
comparable or better (due to fractional pel accuracy) performance
with respect to the other motion estimation methods. The proposed
method results in an almost constant time for motion estimation for
any search range, where as the time for the search type of methods
increases with the search range. All the algorithms perform better
than Wiener-based method in terms of the average PSNR value.
Table 2 shows the speed up ratio of various motion estimation
methods compared with the FS method. The proposed TLS method
can be seen to achieve a very high speed up in comparison with the
other methods.

BMA BBGDS Wiener TLS
Miss America 41.38 41.31 40.17 41.60

Trevor 34.63 34.36 32.93 33.59
Suzie 36.34 35.70 33.94 35.50
Claire 42.87 42.82 42.16 43.12

Table 1: Performance comparison of various algorithms with respect to
the average PSNR.

BMA BBGDS Wiener TLS
Miss America 1 56.46 60.54 99.00

Trevor 1 45.24 76.40 133.33
Suzie 1 44.44 62.34 89.28
Claire 1 68.02 69.70 75.75

Table 2: Speedup factors comparison of various algorithms with respect to
the Full Search BMA.

We also implemented the proposed motion estimation method
in a H.263 [9] encoder with half pel accurate motion estimation.
This is a modified version of Telenor’s H.263 encoder [15] with
the original motion estimation replaced by the proposed scheme.
Telenor’s original encoder implements the motion estimation as per
ITU TMN 5 model [10]. A constant bitrate of 36 kb/s was obtained
using a rate control algorithm. We compare the speedup (Table 4)
and average PSNR (Table 3) of our H.263 encoder with that of
the original Telenor encoder and University of British Columbia’s
(UBC) fast motion estimation encoder [5] (also a modified ver-
sion of the original Telenor encoder) which uses motion estimation
method from ITU TMN 8 model [11]. Figure 2 shows the av-
erage PSNR plots for all three encoders for all four sequences.
Figure 3 shows the original and reconstructed frame number 100
for “Trevor" sequence using different encoders. From all the sim-
ulation results we observe that the proposed method is able to do

very fast motion estimation and overall encoding at the expense of a
slight degradation in PSNR value and with a comparable subjective
quality.
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Figure 2 : Performance comparison plots for various existing
H.263 video standard encoders, with different motion estima-
tion algorithms.

Telenor UBC TLS
Miss America 38.17 38.07 37.86

Trevor 30.88 30.75 30.58
Suzie 33.90 33.82 33.28
Claire 38.42 38.36 38.27

Table 3: Performance comparison of various existing H.263 encoders with
respect to the average PSNR.

Telenor UBC TLS
Miss America 1 35.05(5.21) 63.62(7.75)

Trevor 1 32.48(5.51) 71.22(10.41)
Suzie 1 30.55(5.51) 70.23(9.26)
Claire 1 26.86(4.16) 45.68(8.73)

Table 4: The speedup factors for the motion estimation part (and overall
encoding) compared with the original Telenor’s H.263 encoder.

In a real application the video sequence may be corrupted by
camera noise or some other noise sources (in the remote surveil-
lance kind of application). Considerable research [12] has been
done in processing of noisy image sequences. However most of
the video compression motion estimation algorithms have not fo-
cussed on this aspect. The final set of simulations were done on
the four test sequences with additive white Gaussian noise. A
Gaussian noise with mean 0 and sigma 12 was added to all Y;Cb;
and Cr components. The noise level was chosen as the maximum
value which gives a reasonable decoded video quality for all four
test sequences after encoding with H.263 encoders at 64 kb/s. To
increase the motion activity between the successive frames, a tem-
poral sampling factor of 3 was used for all the sequences. This
is in order to illustrate the performance of the proposed method



even when the amount of motion activity between the successive
frames is rapid. We calculated two PSNR values for these simu-
lations. The first values are between the noisy sequence and the
decoded (reconstructed after encoding) sequence. Average PSNR
degradation for TLS method for this case was 0.1 and 0.04 dB
with respect to Telenor and UBC encoders. The second set of
PSNR values are between the original (noiseless) sequence and the
decoded sequence. These are given in Table 5. The speedup fac-
tors for the motion estimation and overall encoding are similar to
those reported above for noiseless case and are not included again.
As can be observed from Table 5 the proposed method achieves
a slightly higher average PSNR than both Telenor’s and UBC’s
encoder when the PSNR values are with respect to the original
(noiseless) sequence. This is because our proposed TLS method is
more robust in noisy environments. The average PSNR improve-
ment is small, however this is obtained at the same time achieving
an average speedup of 64 times and 9 times respectively for the
motion estimation and overall encoding as compared to Telenor’s
encoder.

Telenor UBC TLS
Miss America 28.97 28.90 29.01

Trevor 24.59 24.56 24.65
Suzie 26.34 26.36 26.51
Claire 25.05 25.10 25.12

Table 5: Performance comparison of various existing H.263 encoders with
respect to the average PSNR for noisy video sequences. PSNR values are

between the original (noiseless) and the reconstructed sequence.

Original Telenor

UBC TLS

Figure 3 : Original and reconstructed frame number 100
for “Trevor" sequence from different H.263 encoders.

4. CONCLUSIONS

We have proposed a Total Least Squares (TLS) based fast motion
estimation method which is suitable for very fast video encoding in
noisy environments. The method attempts to combine the advan-
tages of block based algorithms and pel recursive algorithms for
motion estimation. Extensive simulation results illustrate the very
high speed of the proposed method over other existing methods.

The proposed method was used to build a fast H.263 video encoder
and its performance was compared with the currently available en-
coders. The TLS method is robust and results in overall superior
performance in speed and PSNR compared to the other methods in
a noisy environment.
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