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ABSTRACT

One di�cult problem we are often faced with in cluster-
ing analysis is how to choose the number of clusters. In
this paper, we propose to choose the number of clusters
by optimizing the Bayesian information criterion (BIC),
a model selection criterion in the statistics literature. We
develop a termination criterion for the hierarchical clus-
tering methods which optimizes the BIC criterion in a
greedy fashion. The resulting algorithms are fully auto-
matic. Our experiments on Gaussian mixture modeling
and speaker clustering demonstrate that the BIC crite-
rion is able to choose the number of clusters according to
the intrinsic complexity present in the data.

1. INTRODUCTION

Clustering methods have been widely used in statistical
data analysis to model a complex data set. Globally the
data set might be inhomogeneous and di�cult to be un-
derstood. However, if we cluster the data into homoge-
neous regions, then each cluster is much simpler, for which
various models can be constructed. Many clustering al-
gorithms have been developed in the literature, ranging
from hierarchical methods such as bottom-up (or agglom-
erative) methods and top-down (or divisive) methods, to
optimization methods such as the k-means algorithm.

One di�cult problem we often encounter in clustering
analysis is how to choose the number of clusters. The
common practice is to pre-determine the number of clus-
ters, then run the clustering algorithm. In hierarchical
methods, clustering trees are often constructed; accord-
ing to the desired number of clusters, one can go down
the tree to obtain desired clustering. In the k-means al-
gorithm, according to the desired number of clusters, one
picks that many initial seeds. Another common practice
is to threshold the distance measures during the hierarchi-
cal process; the thresholding level is tuned on a training
set. However, all these methods are heuristic.

Ideally the number of clusters should be chosen auto-
matically according to the complexity of the data set: the
higher the complexity, the more clusters are needed. For
example, in speech recognition, we use Gaussian mixtures
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Figure 1. Di�erent degrees of complexity in phone ER-3 and

KD-3

to model the output distribution for sub-phonetic units
(or HMM states) [2]; each Gaussian then corresponds to
a cluster in the speech feature space. Di�erent phonetic
units may have di�erent degrees of complexity. Figure 1
shows the samples corresponding to the �rst sub-phonetic
units of phone KD-3 and ER-3 from the WSJ SI-284 cor-
pus, plotted along the directions of their �rst 2 principle
components. It appears that KD-3 has a simpler struc-
ture than ER-3; therefore fewer Gaussians are needed in
order to have an adequate model for KD-3.

In this paper, we propose to choose the number of
clusters by optimizing the Bayesian information criterion
(BIC), a model selection criterion in the statistics liter-
ature. The resulting algorithm is fully automatic. In
general, one can run the clustering algorithm to obtain
a clustering Cn which has n clusters. Each clustering Cn
is evaluated at its BIC value. Then the clustering with
the highest BIC value is chosen. It is often rather slow to
perform such global searching on the BIC values. How-
ever, for hierarchical methods, we propose a termination
criterion which optimizes the BIC criterion in a greedy



fashion: in the bottom-up methods, two nodes are merged
only if the merging increases the BIC value; similarly in
the top-down methods, a node is split only if the split-
ting increases the BIC value. Our experiments on Gauss-
ian mixture modeling and speaker clustering demonstrate
that the BIC criterion is able to choose the number of
clusters according to the intrinsic complexity present in
the data set.

This paper is organized as follows: section 2 describes
model selection criterions in the statistics literature; sec-
tion 3 presents clustering via BIC; section 4 explains hier-
archical clustering via greedy BIC; we present our exper-
iments on speaker clustering and Gaussian mixture mod-
eling in section 5 and section 6; in section 7, we compare
our speaker clustering algorithm with other recent works
in the literature [5, 7].

2. MODEL SELECTION CRITERIONS

The problem of model identi�cation is to choose one
among a set of candidate models to describe a given data
set. We often have candidates of a series of models with
di�erent number of parameters. It is evident that when
the number of parameters in the model is increased, the
likelihood of the training data is also increased; how-
ever, when the number of parameters is too large, this
might cause the problem of overtraining. Several criteria
for model selection have been introduced in the statis-
tics literature, ranging from nonparametric methods such
as cross-validation, to parametric methods such as the
Bayesian Information Criterion (BIC) [8].

BIC is a likelihood criterion penalized by the model
complexity: the number of parameters in the model. In
detail, let X = fxi : i = 1; � � � ; Ng be the data set we are
modeling; letM = fMi : i = 1; � � � ;Kg be the candidates
of parametric models. Assuming we maximize the like-
lihood function separately for each model M , obtaining,
say L(X ;M ). Denote #(M ) as the number of parameters
in the model M . The BIC criterion is de�ned as:

BIC(M ) = logL(X ;M )� 1

2
#(M )� log(n) (1)

The BIC procedure is to choose the model for which the
BIC criterion is maximized. This procedure can be de-
rived as a large-sample version of Bayes procedures for
the case of independent, identically distributed observa-
tions and linear models [8].

The BIC criterion has been widely used for model iden-
ti�cation in time series [9], linear regression [3], etc. BIC
is closely related to other penalized likelihood criterions
such as AIC [1] and RIC [3]; BIC has theoretical advan-
tages because of its connection with Bayesian procedures.

3. CLUSTERING VIA BIC

In this section, we describe how to apply BIC in clustering
analysis.

Let X = fxi 2 Rd : i = 1; � � � ; Ng be the data set
we wish to cluster. Let Ck = fci : i = 1; : : : ; kg be the
clustering which has k clusters. We model each cluster ci
as a multi-variate Gaussian distribution N (�i;�i), where
�i can be estimated as the sample mean vector and �i

can be estimated as the sample covariance matrix. Thus
the number of parameters for each cluster is d+ 1

2
d(d+1).

Let ni be the number of samples in cluster ci. One can
show that

BIC(Ck) =
kX

i=1

f�1

2
ni log j�ijg�Nk(d+

1

2
d(d+ 1)) (2)

We choose the clustering which maximizes the BIC crite-
rion.

We applied the BIC criterion to cluster the data sets
of phone KD-3 and ER-3 shown in Figure 1. For a given
number of clusters, k-means algorithm was employed to
generate the clustering. As in shown Figure 1 (a) and
(b), KD-3 seems to have a lower degree of complexity
than ER-3. Indeed the BIC criterion chose 25 clusters for
ER-3 versus 10 clusters for KD-3. Figure 1 (c) and (d)
shows how the BIC value evolves as the number of clusters
increases: for KD-3, the BIC value increases initially, then
declines rapidly as the likelihood saturates; for ER-3, the
BIC value increases in the beginning, then declines slowly,
indicating a higher degree of complexity.

We comment that we could model each cluster as sim-
pler distributions, such as multivariate Gaussians with di-
agonal covariance matrices, or as more complex distribu-
tions, such as Gaussian mixtures. In either case, we will
still be able to derive a BIC criterion.

4. HIERARCHICAL CLUSTERING VIA

GREEDY BIC

As one can imagine, it is often very costly to search glob-
ally for the best BIC value, since clustering has to be
performed to obtain di�erent numbers of clusters. How-
ever, for hierarchical clustering methods, it is possible to
optimize the BIC criterion in a greedy fashion.

Let X = fxi 2 Rd : i = 1; � � � ; Ng be the data set.
Bottom-up methods start with each data sample as initial
nodes, then successively merge two nearest nodes accord-
ing to a distance measure. Let S = fs1; : : : ; skg be the
current nodes; suppose s1 and s2 are the candidate pair
for merging, and the merged new node is s. Thus we are
comparing the current clustering tree S with a new clus-
tering tree S0 = fs; s3; : : : ; skg. We model each node si as
a multivariate Gaussian distribution N (�i;�i). It is clear
from (2) that the increase of the BIC value by merging s1
and s2 is

�n log j�j+n1 log j�1j+n2 log j�2j+N (d+
1

2
d(d+1)) (3)

where n = n1+ n2 is sample size of the merged node and
� is the covariance matrix of the merged node.



Our BIC termination procedure is that two nodes
should not be merged if (3) is negative. Since the BIC
value in increased at each merge, we are searching for an
\optimal" clustering tree by optimizing the BIC criterion
in a greedy fashion.

Note that we merely use our criterion (3) for termina-
tion. It is possible to use our criterion (3) as the distance
measure in the bottom-up process. However, in many ap-
plications, it is probably better to use more sophisticated
distance measures. It is also clear that our criterion can
be applied to top-down tree methods.

5. APPLICATION IN SPEAKER

CLUSTERING

Suppose we have a collection of sentences; each sentence
is from a certain unknown speaker. We are interested
in clustering the sentences according to speaker identi-
ties. Most speaker clustering algorithms in the literature
are hierarchical clustering methods with various distance
measures. In this section, we present our speaker clus-
tering experiment utilizing the BIC termination criterion
(3).

The data set consists of the clean prepared and the
clean spontaneous portion of the HUB4-96 evaluation
data [2], hand-segmented into 824 short segments. Cep-
stra coe�cients were extracted as feature vectors xi for
each segment. We used the log likelihood ratio distance
measure proposed in Gish et. al. [4]; Bottom-up cluster-
ing was performed with the maximum linkage, with the
BIC termination criterion (3).

The true number of speakers is 28; the BIC termina-
tion criterion chose 31 clusters. For each cluster, we de�ne
the purity as the ratio between the number of segments
by the dominating speaker in that cluster and the total
number of segments in that cluster. Figure 2 shows the
purities of each cluster. Clearly our algorithm results in
not only clusters with high purity, but also the appropri-
ate number of clusters.

Speaker clustering can enhance the performance of un-
supervised adaptation. The reason is that most of the
824 segments here are quite short, around 2 � 3 sec-
onds. Without speaker clustering, unsupervised adapta-
tion techniques such as MLLR [6] has small improvements
due to lack of data. Good speaker clustering can bring the
segments of the same speaker together thus improves the
performance of unsupervised adaptation. We started from
a baseline system which had about 90k Gaussians. The
decoding results were scored according to two conditions:
clean prepared and clean spontaneous. As shown in Table
1, the baseline error rates were 18:8% and 27:0% for the
two conditions respectively; without clustering, MLLR re-
duced the error rates by only 0:1%; with our clustering,
MLLR reduced the error rates by 1:3% for the clean con-
dition and by 2:4% for the spontaneous condition. Table
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Figure 2. Clustering Purities

Prepared Spontaneous

Baseline 18.8% 27.0%

MLLR w/o clustering 18.7% 26.9%

MLLR w/ ideal clustering 17.5% 24.8%

MLLR w/ BIC clustering 17.5% 24.6%

Table 1. MLLR adaptation enhanced by BIC clustering

1 also shows the error rates of MLLR using the ideal clus-
tering by the true speaker identities. It is clear that our
speaker clustering enhanced the performance of MLLR as
much as the ideal clustering.

6. APPLICATION IN GAUSSIAN MIXTURE

MODELING

Suppose we have a data set of high dimensional continuous
observations X = fxi 2 Rd; i = 1; � � � ; ng, and we are
interested in modeling the data set as a Gaussian mixture
distribution. When the sample size n is large, top-down
clustering methods are often used to cluster the data set
into clusters, and each cluster results in a Gaussian in the
mixture. It is evident that our BIC criterion (3) can be
applied here to choose the number of clusters.

Gaussian mixtures are used in the IBM large vocabu-
lary speech recognition systems to model the HMM states
[2]. Normally the number of Gaussians are chosen by a
threshold method: for example, if the total number of
samples in the entire training data set is 10 million, and if
the number of samples in each cluster is required to be at
least 100, then there will be 100k Gaussians in the system.

We compare two recognition systems: one has 70k
Gaussians, chosen by the thresholding method; the other
has 38k Gaussians, chosen by the BIC criterion. The two
systems were tested on the WSJ 92 development test set;
they gave similar error rates, as shown Table 2. Thus
by picking the right number of Gaussians, the BIC crite-



rion delivers a system with smaller number of Gaussians
without sacri�cing the performance.

70k baseline system 38k BIC system

Error Rate 8.85% 8.92%

Table 2. Choosing the number of Gaussians via BIC

7. DISCUSSION

In this section, we compare our application in speaker
clustering with some other recent works in the literature.

Jin et al. of BBN [5] proposed a similar automatic
speaker clustering algorithm. They also used the log like-
lihood ratio distance measure proposed in Gish et al. [4],
however, with the distances between consecutive segments
scaled down by a parameter �. They performed hierar-
chical clustering; for any given number k, the clustering
tree was pruned to obtain k tightest clusters. An heuristic
model selection criterion

kX

j=1

n�j j��
j j �

p
k (4)

was then used to search through the space of (�; k) for the
best clustering. They applied this algorithm to cluster the
HUB4-96 evaluation data for the purpose of unsupervised
adaptation. Similarly, this automatic clustering enhanced
the unsupervised adaptation as much as the cheating clus-
tering according the the true speaker identities.

This heuristic model selection criterion (4) resembles
the BIC criterion (2): they both penalize the likelihood
by the number of clusters. However, the BIC criterion has
a solid theoretical foundation and seems more appropri-
ate. Indeed the number of speaker clusters found by their
algorithm is considerably less than the truth. Moreover,
extra information such as the adjacency of the segments
was utilized in their algorithm.

Siegler et al. of CMU [7] proposed another
speaker clustering algorithm. They chose the symmet-
ric Kullback-Leibler metric as the distance measure, and
performed hierarchical clustering. The clusters were ob-
tained by thresholding the distances. Unlike our method
and the BBN clustering, this clustering is not fully au-
tomatic: the thresholding level was tuned in a delicate
fashion: it had to be small enough such that the clusters
created were made up of segments from only one speaker
and yet large enough to improve the performance of the
unsupervised adaptation.

8. CONCLUSION

We proposed an automatic algorithm to choose the num-
ber of clusters in clustering analysis via the BIC crite-
rion. We developed a termination criterion for the hi-
erarchical methods which optimizes the BIC criterion in

a greedy fashion. Our experiments in speaker clustering
and Gaussian mixture modeling demonstrated that the
BIC criterion is able to choose the number of clusters ac-
cording to the intrinsic complexity present in the data
set.
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