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ABSTRACT

Including information distributed over intervals of syllabic dura-
tion (100–250 ms) may greatly improve the performance of auto-
matic speech recognition (ASR) systems. ASR systems primarily
use representations and recognition units covering phonetic dura-
tions (40–100 ms). Humans certainly use information at phonetic
time scales, but results from psychoacoustics and psycholinguis-
tics highlight the crucial role of the syllable, and syllable-length
intervals, in speech perception. We compare the performance of
three ASR systems: a baseline system that uses phone-scale repre-
sentations and units, an experimental system that uses a syllable-
oriented front-end representation and syllabic units for recognition,
and a third system that combines the phone-scale and syllable-scale
recognizers by merging and rescoringN -best lists. Using the com-
bined recognition system, we observed an improvement in word
error rate for telephone-bandwidth, continuousnumbers from 6.8%
to 5.5% on a clean test set, and from 27.8% to 19.6% on a rever-
berant test set, over the baseline phone-based system.

1. INTRODUCTION

Automatic speech recognition (ASR) systems typically focus on
short-time information distributed over periods of 10–100 ms. A
speech signal is partitioned into overlapping frames of 20–30 ms
for purposes of feature extraction. Frames are classified into phone
or sub-phone classes typically using features from one to five con-
tiguous frames. These frame-level classifications are then assem-
bled together via a decodingprocess incorporating constraints from
a set of word models which describe words as sequences of phone
or sub-phone units, and a model of the grammar of the language,
to produce a hypothesized word sequence. Some strategies for im-
proving the robustness of the front-end speech representation, e.g.,
cepstral normalization and speakeradaptation, employ information
from longer segments of speech.

While the successful application of current speech recognition
technology to a range of tasks clearly demonstrates the utility of
short-time speech representations and units, there is ample evidence
that information distributed over longer periods of time, especially
over durations of syllabic length (100–250 ms), should also be
incorporated into the recognition process. To test the usefulness of
syllable-time-scale information in automatic speech recognition,
we developed an ASR system that focuses on information encoded
over syllabic durations and compared its performance on clean
and reverberant speech with that of a baseline recognizer focusing
on information at the phonetic segment scale, as well as with

a recognizer that combines the syllable-based and phone-based
recognizers into a single system. While the baseline recognizer
has better performance than the syllable-based recognizer on both
the clean and reverberant test sets, the recognizer that combines
both the phone-scale and the syllable-scale systems is significantly
better than the baseline on both clean and reverberant speech.

We briefly review some of the evidence for the importance of
syllable-scale information in human speech perception. Next, we
describe the speech materials and recognition systems used in our
experiments, with an emphasis on the methods used to focus on
syllable-scale information in the front-end speech representation,
speech unit classification, and speech decoding stages of an ASR
system. Next, we review different methods for combining speech
recognition systems and explain the utterance-level combination
method we used. Finally, we discuss the results of our experiments.

2. THE SYLLABLE IN SPEECH RECOGNITION

Although the role of the syllable in human speech processing is
the subject of continuing investigation, psychoacoustic and psy-
cholinguistic studies suggest that the syllable plays a central role
in human speech perception.

Studies of human speech perception demonstrate the depen-
dence of speech intelligibility on relatively slow changes in the
spectrum of the speech signal. These changes manifest themselves
as amplitude modulations at rates of 2–16 Hz in subbands follow-
ing a critical-band spectral analysis. The first evidence for this
relationship between slow modulations and speech intelligibility
emerged from the work of Homer Dudley and his colleagues at
Bell Labs on the channel vocoder [6]. Subsequently, work on the
prediction of speech intelligibility in reverberant and noisy rooms
[12] and over nonlinear communications channels [17] have high-
lighted the importance of slow modulations. Recent perceptual
studies [5, 1] show that suppression of modulations in the 2–8 Hz
range significantly degrades speech intelligibility. Modulations in
this frequency range correspond to the typical durations of single
syllables and metrical feet.

A second line of evidence for the role for syllables in speech
recognition comes from the study of echoic memory. Measure-
ments of the capacity of the human echoic memory [13, 15] demon-
strate that this preperceptual buffer can store roughly 250 ms. In
conversational English nearly 80% of syllables have a duration of
250 ms or less [9]; thus, the syllable may constitute a natural unit
for the segmentation and recognition of the speech signal, as it is
the largest unit of speech which can fit into preperceptual storage.



That the syllable plays an important role in identification can
be surmised from [18], in which the author asserts that “temporal
compounds” are formed by acoustic elements and that the human
perceptual system can identify these compounds more readily than
constituent sounds. These temporal compounds were found to be
longer than the typical phoneme length through experiments with
loud, clear, repeating vowel acoustic elements catenated together.

The syllable was proposed as a unit for automatic speech recog-
nition as early as 1975 [8]. Since then, the syllable has been revis-
ited in a number of speechrecognition systems in several languages
and in various capacities, most recently in [19, 7]. The syllable is
an attractive unit for recognition for several reasons:

1. Syllable representations and durations may exhibit greater
stability relative to phoneme-based representations and du-
rations.

2. Syllables appear to offer a natural interface between speech
acoustics and lexical access.

3. Syllables constitute a convenient framework for incorporat-
ing suprasegmental prosodic information into recognition.

The implementation of syllable-based recognizers has proven to be
challenging, however.

3. EXPERIMENTAL MATERIALS AND RECOGNIZERS

3.1. Speech Material

Recognition experiments were performed on a subset of the OGI
Numbers corpus [4], a set of continuous, naturally spoken utter-
ances collected from many different speakers over the telephone.
The 32-word vocabulary is restricted to numbers, including such
confusable sets as “four,” “fourteen,” and “forty.” A sample ut-
terance from the database is “eighteen thirty one.” The subset of
the Numbers corpus used in these experiments has a training set of
about three hours of speech (3600 utterances) and a development
test set and an evaluation test set each containing about one hour of
speech (1200 utterances). Recognizer performance was measured
on unmodified “clean” and digitally reverberated versions of the
evaluation test set, while recognizer training was performed on the
clean training set. The reverberant test sets were generated by con-
volving the clean sets with an impulse response measured in a room
having a reverberation time of 0.5 s and a direct-to-reverberant en-
ergy ratio of 0 dB.

3.2. Baseline Recognizer

Each of the speech recognition systems implemented for these
experiments was a hybrid hidden Markov model/multilayer per-
ceptron (HMM/MLP) speech recognizer [3] in which the pho-
netic classification was performed with a single-hidden-layer MLP
and speech decoding was performed by NOWAY [16], a start-
synchronous stack decoder. The recognizers all used the same
backoff bigram grammar, derived from the Numbers training set,
for language modeling.

The baseline recognizer used eighth-order log-RASTA-
PLP [11] features computed over 25-ms windows with a 10-ms
window step, supplemented with delta features computed over a 9-
frame window. RASTA-PLP features include a filtering operation
on critical-band spectral trajectories, using a filter with a 1–12 Hz
passband. The MLP phonetic classifier,with 400 hidden units, took
features from 105 ms (9 frames) of speech and classified them into

32 phone categories. A multiple-pronunciation lexicon with sim-
ple minimum-duration modeling was developed for the baseline
recognizer based on the phonetic hand-transcriptions of the train-
ing data. Embedded Viterbi alignment was applied iteratively to
optimize the lexicon pronunciations, minimum phone durations,
and training labels.

3.3. A Syllable-based Recognizer

The syllable-based recognizer used modulation spectrogram fea-
tures [10] for the front-end speech representation. To compute
these features, speech sampled at 8 kHz is analyzed into 15 quarter-
octave channels using an FIR filterbank. In each channel, an ampli-
tude envelope is computed by performing half-wave rectification,
low-pass filtering with a 20-Hz cutoff frequency and decimation
by a factor of 80 on the filter output. These steps produce a spec-
tral shape estimate with critical-band-like resolution. Next, each
amplitude envelope signal is normalized by its average value, com-
puted over an entire utterance, to provide a crude model of the
auditory adaptation. The normalized envelope signals are filtered,
to model auditory sensitivity to slow modulations, compressedwith
a cube-root nonlinearity, and normalized to a range of [�1;+1].
Two different modulation filters are used in parallel: a low-pass
filter with a cutoff frequency of 8 Hz and a band-pass filter with
cutoff frequencies of 2 Hz and 8 Hz. This severe modulation fil-
tering blurs envelope fluctuations at the phonetic segment scale
(12–20 Hz), while emphasizing changes at the syllabic scale. The
most important difference between these features and the RASTA
features is the much narrower filter applied to the envelope signals,
which leads to comparatively more temporally-smeared features.

Similar to the baseline system, the MLP in the syllable-based
system had a single hidden layer of 400 units, though the syllable-
based system used an extended context window of 185 ms (17
frames) and classified the features into 124 “semi-syllable” cate-
gories.

The syllable-based lexicon was derived from the baseline sys-
tem’s lexicon via a direct mapping from phones to semi-syllable
units. For each pronunciation in the lexicon, the corresponding
phone sequencewas partitioned into syllables via an automatic syl-
labification program. The syllables were split into semi-syllables at
the midpoint of the nucleus. Minimum duration constraints for the
decoding process were derived directly from the minimum dura-
tions for the constituent phones of each semi-syllable. Although a
forced-alignment procedure was used to realign the training labels,
the lexicon was not further optimized.

3.4. Combining Recognizers

Combinations of speech recognition systems can potentially
achieve better accuracy than individual recognizers if the recog-
nizers being combined tend to make independent errors and the
combination method allows correct answers to override incorrect
ones. Merging methods (classifier fusion techniques) at the frame
level [14] and at the syllable level [7] that blend diverse informa-
tion sources have been applied to obtain substantial improvements
in accuracy. For our experiments, we have focused on merging
recognition systems at the whole-utterance level.

To combine the results of the baseline and syllable-based rec-
ognizers at the whole-utterance level, each recognizer is used to
generate a word lattice for each input utterance. For each utterance,
an N -best list with a maximum length of 150 hypotheses is gener-
ated from each lattice, the two N -best lists are concatenated, and



duplicate hypotheses are eliminated. For each hypothesis in this
merged list two acoustic scores are calculated via forced alignment
using the baseline and syllable-based recognizers and a language
model score is calculated from the backoff bigram grammar. The
final score for each utterance is a weighted sum of the two acoustic
scores and the language model score. An empirically determined
weighting factor can be applied to influence the fusion of the acous-
tic scores from the different recognizers. In a series of experiments
with the cross-validation portion of the training set, we found that
the optimal weighting factor varied with task and system parame-
ters. In the absence of a method for determining a good weighting
on-line, an equal weighting of the acoustic scores seemed to be
the best operating point. From the list of rescored hypotheses, the
top-scoring word sequence was selected as the recognized result
for the utterance.

As a theoretical note, the adding of log likelihoods in the recog-
nition fusion procedure assumes that the likelihoods are indepen-
dent. Though this assumption is clearly incorrect, the combining
method described still proves to be effective in the experiments
described below.

4. RESULTS AND DISCUSSION

No optimization of recognizer parameters was performed on the
evaluation test set. The cross-validation portion of the training set
was used for optimization of parameters such as the language scal-
ing factor, word transition penalty and the relative weighting of the
two recognizers in the combined system. After this optimization
process, we had four recognition systems defined that incorpo-
rated slightly different sets of syllable-based information. A single
syllable-based system was selected based on the performance of
these four systems on the development test, and only this system
was used for the evaluation test set results.

Because the combined system has many more parameters than
either of the constituent systems, we conducted several experi-
ments with expanded hidden layers and larger feature sets on the
development test set to rule out the possibility that the observedper-
formance improvement is merely the result of the increasednumber
of recognizer parameters. When the hidden layer of the MLP was
expanded to 1000 hidden units to equalize the total number of pa-
rameters with the combined system, we observed no improvement
with the clean version of the development test set, and a modest
improvement, 5.7% relative, with the reverberant test set. Com-
bining the RASTA and modulation spectrogram acoustic features
at the input to a 400-hidden-unit MLP (which also equalizes the
total number of parameters) resulted in a 1% relative increase in
word error rate for the clean development test set and a 17% rela-
tive decrease in word error rate for the reverberant version of the
development test set. None of the improvements in accuracy were
as large as that achieved by combining at the frame or utterance
level.

Table 1 summarizes the performance of the different recog-
nition systems on the clean and reverberant evaluation test sets.
The syllable-based system is less accurate than the baseline system
for both the unmodified and digitally reverberated test sets. The
reported performance of this system and also the combined system
is conservative because the lexicon used for recognition was tuned
for the baseline system and not optimized for the syllable system.
Table 1 also shows that the combined system is significantly more
accurate that either of the two constituent systems (statistically sig-
nificant at the 0.05 level). The clean performance represents a 19%

System Clean Reverb.

RASTA, phone units, 6.8% 27.8%
105-ms context window
Baseline
ModSpec, syllable units, 9.8% 30.9%
185-ms context window
Combined 5.5% 19.6%

Table 1: Word-error rates for each individual system and combined
for evaluation test set.

relative reduction in error over the baseline system performance,
and the reverberant performance is a 29% relative reduction in error
compared to the baseline on the evaluation test set. These findings
closely resemble the performance of the system on the development
test set, where the introduction of the combined system reduced the
error rate on the clean development test set from 7.0% to 5.6% and
on the reverberant development test set from 29.2% to 20.0%. The
performance improvement achieved for reverberant speech is sim-
ilar to that obtained by us using a frame-level combination method
(unpublished observations), as well as to the results in [2], where
a multiresolution channel normalization method that operates over
time spans of 10 sec. is used to compensate for reverberation.

5. CONCLUSIONS

A syllable-length time scale appears to be a fundamental property
of the human speech recognition system. We have implemented
an automatic speech recognition system with syllables and syllabic
time scales integral to the processing at the feature-extraction level,
at the input to the phonetic classification stage and as the unit
of speech recognition. Although this system did not perform as
well as our baseline system, a combination of the two systems,
through a mechanism that merges and rescores N -best lists of
whole utterances, significantly outperforms the baseline system on
both clean and reverberant versions of the test data. We believe this
result is due to mutual compensation of the blended recognizers
that offsets the weaknesses of the individual systems.
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