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ABSTRACT

Three modi�cations on the adaptive decorrelation �lter-
ing (ADF) algorithm are proposed to improve the perfor-
mance of a co-channel speech separation system. Firstly,
a simpli�ed ADF (SADF) is suggested to reduce the com-
putational complexity of ADF from O(N2) to O(N) per
sample, where N is the �lter length used in the channel es-
timation. Secondly, a transform-domain ADF (TDADF)
is developed to accelerate the convergence of the �lter
estimates while maintaining computational complexity at
O(N). Thirdly, a generalized ADF (GADF) is derived to
handle the noncausal �lter estimation problem often en-
countered in co-channel speech separation. Experimental
results showed that when the average signal-to-interference
ratios (SIRs) in the co-channel signals were 6.15 and 5.38
dB, respectively, both the SADF and TDADF improved
the SIRs to around 18 to 19 dB, and the GADF further
improved the SIRs to around 19 to 24 dB.

1. INTRODUCTION

The state-of-the-art techniques in automatic speech recog-
nition (ASR) are still vulnerable in the presence of interfer-
ences [1]. One of the di�cult problems is the interference
speech from competing talkers, or even worse, if the talk-
ers are moving around. In these scenarios, robust speech
recognition remains a challenging task.
In our recent work [2][3], adaptive decorrelation �ltering

(ADF) [4][5] was used as the core of a signal-separation
front-end for improving the signal-to-interference ratio
(SIR) in the input speech to an ASR system. In this scheme,
two coexistent and independent speech sources are consid-
ered, and their convolutive mixtures are acquired via two
microphones. Our experiments in [2] and [3] showed sat-
isfactory improvements on both SIR and recognition accu-
racy when the distortion introduced by the acoustic paths
between each microphone and its targeted source was ne-
glectable. However, the system performance was seriously
deteriorated when such distortion became signi�cant. In
addition, the computational complexity of ADF is O(N2),
which prohibits real-time implementation of the co-channel
speech separation system. In the current work, several key
improvements on the ADF algorithm are made which yields
a faster converging, O(N) algorithm, and the algorithm is
generalized for the estimation of noncausal long �lters.
This paper is organized into six sections. In Section 2, the

co-channel speech separation system using ADF are brie
y
described. Then a modi�cation on ADF is proposed to
reduce the computational complexity of ADF. In Section
3, the ADF is formulated in the Fourier transform domain
improve the e�ciency of the system. In Section 4, an gener-
alized ADF is derived to re�ne the separation performance.
Experimental results are presented in Section 5 and a con-
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Figure 1. Block diagram of the co-channel system
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Figure 2. Block diagram of the signal separation
system in Eq. (2)

clusion is made in Section 6.

2. CO-CHANNEL SYSTEM AND SIGNAL
SEPARATION

This section starts with the description of the co-channel
speech separation system. The background of the ADF al-
gorithm is then given brie
y. A modi�cation on the ADF
algorithm to reduce the computational complexity is pro-
posed at the end of the section.

2.1. Co-Channel Speech Acquisition System
In a co-channel speech acquisition system, each microphone
acquires not only its target signal, but also the interference
signals from the other source. Let x1(t) and x2(t) be the
signals generated by sources 1 and 2, respectively, which
are assumed to be independent of each other. The signal
acquired by the microphone that targets the source 1 is
denoted by y1(t), and that acquired by the microphone that
targets the source 2 is denoted by y2(t). Using the linear
�lters Hij , i, j =1 or 2, to model the acoustic paths from
the source j to the microphone i, the co-channel system can
be described in the frequency domain as

Y1(f) = H11(f)X1(f) +H12(f)X2(f)
Y2(f) = H22(f)X2(f) +H21(f)X1(f)

(1)

The block diagram of the co-channel system is illustrated
in Fig. 1.

2.2. Signal Separation by Adaptive Decorrelation
Filtering

If the distortion and delay introduced by the acoustic paths
between each microphone and its targeted source is ne-
glectable, i.e. H11(f)=H22(f)=1, it was shown in [4] that



the signals from sources 1 and 2 can be separated out from
y1(t) and y2(t) into v1(t) and v2(t) as

V1(f) = Y1(f)�A(f)Y2(f)
V2(f) = Y2(f)�B(f)Y1(f)

(2)

with A(f) = H12(f) and B(f) = H21(f). The block di-
agram of this system is illustrated in Fig. 2. It was also
shown that the �lters H12 and H21 can be estimated by the
ADF algorithm:

a(t) = a(t�1) + �(t)v
(t�1)
2 (t)v

(t�1)
1 (t)

b(t) = b(t�1) + �(t)v
(t�1)
1 (t)v

(t�1)
2 (t)

(3)

where the vectors a(t) of length Na and b(t) of length
Nb are the estimates of the coe�cients of �lters A and
B at time t, with a(t) = [a(t)(0); � � � ; a(t)(Na � 1)]T and

b(t) = [b(t)(0); � � � ; b(t)(Nb � 1)]T ; �(t) is a chosen adapta-

tion gain, and v
(t�1)
1 (�) and v

(t�1)
2 (�) denote the values of

signals v1(�) and v2(�) calculated according to a(t�1) and

b(t�1):

v
(t�1)
1 (�) = y1(� )� y

2
(�)Ta(t�1)

v
(t�1)
2 (�) = y2(�)� y

1
(� )T b(t�1)

(4)

The vectors y
1
(t), y

2
(t), v

(t�1)
1 (t) and v

(t�1)
2 (t) are de�ned

as

y
1
(t) = [y1(t); � � � ; y1(t�Nb + 1)]T

y
2
(t) = [y2(t); � � � ; y2(t�Na + 1)]T

v
(t�1)
1 (t) = [v

(t�1)
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1 (t�Nb + 1)]T

v
(t�1)
2 (t) = [v

(t�1)
2 (t); � � � ; v(t�1)
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When the e�ects of H11 and H22 become signi�cant,
Eq. (1) can be rewritten as

Y1(f) = X 0

1(f) +H�1
22 (f)H12(f)X

0

2(f)
Y2(f) = X 0

2(f) +H�1
11 (f)H21(f)X

0

1(f)

where X 0

1(f) = H11(f)X1(f) and X 0

2(f) = H22(f)X2(f),
and hence the signals from the two sources can still be sep-
arated using the system described by Eq. (2) with A(f) =
H�1

22 (f)H12(f) and B(f) = H�1
11 (f)H21(f). As a result,

when applying the ADF in this case, H�1
22 H12 and H

�1
11 H21

are estimated instead of H12 and H21.

2.3. Simpli�ed Adaptive Decorrelation Filtering

From the discussion above, the estimation of �ltersH�1
22 H12

and H�1
11 H21 are usually required for speech separation.

Even if all the Hij 's are short FIR �lters, H�1
22 H12 and

H�1
11 H21 become IIR �lters. As a result, large Na and Nb

are usually necessary to achieve satisfactory separation re-
sults. From Eqs. (3) and (4), the computational complexity
of ADF is O(N2

a +N2
b ) per sample. Therefore, the required

computations increase signi�cantly as Na and Nb increase.
To simplify the algorithm, Eqs. (3) and (4) can be mod-

i�ed as
a(t) = a(t�1) + �(t)v2(t)v1(t)
b(t) = b(t�1) + �(t)v1(t)v2(t)

(5)

and
v1(t) = y1(t)� y

2
(t)Ta(t�1)

v2(t) = y2(t)� y
1
(t)T b(t�1) (6)

where in each adaptation step t, instead of recomputing
the entire v1(t) and v2(t) vectors according to the �lter

estimates a(t�1) and b(t�1), only v1(t) and v2(t) are com-
puted. This modi�cation reduces the computational com-
plexity from O(N2

a +N2
b ) to O(Na+Nb), and the modi�ed

algorithm is referred to as simpli�ed ADF (SADF). Com-
pared to the original ADF, SADF is more stable in conver-
gence due to its slower propagation of errors than in the
original ADF. The only drawback of SADF is the slower
convergence rate, and it becomes obvious when the �lters
are very long.

3. TRANSFORM-DOMAIN ADAPTIVE
DECORRELATION FILTERING

As discussed in Section 2.2, the ADF-based separation of co-
channel speech signals in general requires the estimation of
long �lters. As the lengths of �lters increase, the adaptation
gains must be smaller in order to ensure system stability [3],
which slows down the convergence of �lter estimates. In ad-
dition, the increased interaction between �lter coe�cients
can further slow down the convergence. However, fast con-
vergence is key to the performance of the co-channel speech
separation system when the channels are time-varying. In
previous works, a transform-domain LMS algorithm [6][7][8]
was shown capable of improving the e�ciency of LMS al-
gorithm by signal transformation. Assuming Na = Nb = N
and applying the same idea on the SADF, a transform-
domain ADF (TDADF) algorithm can be derived from the
ADF algorithm by transforming the vectors from the time
domain to the Fourier-transform domain as

A(t) = A(t�1) + ���1(t)V 2(t)v1(t)
B(t) = B(t�1) + ���1(t)V 1(t)v2(t)

(7)

where the vectors V 1(t) and V 2(t) are the DFTs of v1(t)
and v2(t) in Eq. (5):

V 1(t) = Fv1(t)
V 2(t) = Fv2(t)

(8)

The matrix F is the unitary DFT matrix of size (NxN).
In addition, � is a chosen adaptation gain, and �(t) is a
diagonal normalization matrix de�ned as

�(t) = diag [�0(t); � � � ; �N�1(t)]

with the diagonal elements of the matrix equal to the sum
of the estimated variances of the DFT coe�cients of v1(t)
and v2(t):

�k(t) = ��k(t� 1) + (1� �)
�
jV1;k(t)j2 + jV2;k(t)j2

�

where Vi;k(t), i = 1; 2 is the k-th entry of the vector V i(t),
and � is a forgetting factor satisfying 0 < � < 1. With this
normalization, the convergence rate of the �lter coe�cients
can be improved signi�cantly.
The estimated vectors A(t) and B(t) in Eq. (7) are equiv-

alent to the DFTs of the vectors a(t) and b(t). However, by
de�ning the vectors

Y 1(t) = Fy
1
(t)

Y 2(t) = Fy
2
(t) (9)

the v1(t) and v2(t) de�ned in Eq. (6) can be calculated
equivalently by

v1(t) = y1(t)� Y 2(t)
HA(t�1)

v2(t) = y2(t)� Y 1(t)
HB(t�1) (10)

and hence the computation of inverse DFTs of A(t) and B(t)

can be avoided. The computational complexity of length-
N DFT is O(NlogN) by FFT. However, the entries of the



DFT vectors Y 1(t), Y 2(t), V 1(t), and V 2(t) can be updated
e�ciently by

Y1;k(t) =W k
NY1;k(t� 1) + [y1(t)� y1(t�Nb)] =

p
N

Y2;k(t) =W k
NY2;k(t� 1) + [y2(t)� y2(t�Na)] =

p
N

V1;k(t) =W k
NV1;k(t� 1) + [v1(t)� v1(t�Nb)] =

p
N

V2;k(t) =W k
NV2;k(t� 1) + [v2(t)� v2(t�Na)] =

p
N

where W k
N = exp

�
�j 2�k

N

�
. This reduces the complexity of

computing the length-N DFT vectors to O(N). Therefore,
the computational complexity of TDADF stays at O(N).

4. GENERALIZED ADAPTIVE
DECORRELATION FILTERING

From the discussion in Section 2.2, estimating IIR �lters
H�1

22 H12 and H�1
11 H21 is often needed for signal separation.

While increasing Na and Nb enables the FIR �lters A and B
to approximate H�1

22 H12 and H�1
11 H21 better, longer �lters

alone cannot achieve satisfactory estimation results when
the noncausal parts of H�1

22 H12 and H�1
11 H21 become sig-

ni�cant since the ADF algorithm is designed for the estima-
tion of causal �lters. In this section, an alternative adaptive
�ltering con�guration is proposed to improve the accuracy
of acoustic channel estimation under this situation.
In certain applications, the relative locations between the

microphones and their respective targeted sources are �xed,
and therefore the acoustic channels H11 and H22 can be
known. In this case, the two signals from the two sources
can be separated by

V1(f) = H22(f)Y1(f)�A(f)Y2(f)
V2(f) = H11(f)Y2(f)�B(f)Y1(f)

(11)

with A(f) = H12(f) and B(f) = H21(f). Since the �lters
H12(f) and H21(f) are causal, they can be estimated more
accurately. By modifying Eq. (6) as

v1(t) = z1(t)� y
2
(t)Ta(t�1)

v2(t) = z2(t)� y
1
(t)T b(t�1) (12)

where z1(t) = H22 fy1(t)g and z2(t) = H11 fy2(t)g, the
channel �lters H12 and H21 can be estimated by Eqs. (5)
and (12).
By generalization, even if H11 and H22 are unknown, the

signals from di�erent sources can be separated by introduc-
ing two time-delay �lters, D1 and D2, as

V1(f) = D1(f)Y1(f)�A(f)Y2(f)
V2(f) = D2(f)Y2(f)�B(f)Y1(f)

(13)

with A(f) = D1(f)H
�1
22 (f)H12(f) and B(f) =

D2(f)H
�1
11 (f)H21(f). The �lters D1 and D2 shift the im-

pulse responses of H�1
22 H12 and H

�1
11 H21 to the right so that

the �lters to be estimated have less noncausal components.
It should be noted that in this case the z1(t) and z2(t) in
Eq. (12) need to be modi�ed as z1(t) = D1 fy1(t)g and
z2(t) = D2 fy2(t)g. The block diagram of this generalized
separation system is illustrated in Fig. 3.
The generalized ADF (GADF) algorithm discussed above

is sensitive to the initial values of the �lter estimates a(0)

and b(0). Therefore, it requires a good initial condition.
Practically, the SADF can be used to obtain a preliminary
estimates Ap(f) and Bp(f), then Eqs. (5) and (12) can be
used to improve separation using A(f) = D1(f)Ap(f) and
B(f) = D2(f)Bp(f) as the initial condition.
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Figure 3. Block diagram of the signal separation
system in Eq. (13)
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5. EXPERIMENTS

In this section, several experiments are presented to demon-
strate the algorithm improvements discussed in the previ-
ous sections. In the experiments, the speech signals from
TIMIT database were used as the source signals x1(t) and
x2(t). The acoustic environment simulated in the experi-
ments is �rst described. An experiment comparing the con-
vergence rates of ADF, SADF and TDADF then follows.
Finally, the performance of SADF and TDADF with vari-
ous �lter lengths are compared and the performance of the
GADF algorithm is also evaluated.

5.1. Simulation of Acoustic Environments
The acoustic paths from the talker j (j=1 or 2) to the micro-
phone i (i=1 or 2) were measured in the room environment
described in Fig. 4 at the House Ear Institute, Los Angeles,
and were represented by FIR �lters Hij of length 200. The
sampling rate was 10.67 kHz. The four �lters were used to
generate the co-channel convolutive mixture signals from
the source signals. The impulse responses of H�1

22 H12 and
H�1

11 H21 are noncausal and have in�nite lengths, as shown
in Fig. 5.

5.2. Convergence Rate
To compare the convergence rate of the ADF, SADF and
TDADF, a pair of co-channel signals were processed by all
three algorithm, respectively. The normalized estimation
errors (NEE) were de�ned as

E(t) =

�
�a(t) � a�

�
�2

�
�a�

�
�2

+

�
�b(t) � b�

�
�2

�
�b�

�
�2

and were recorded for each step of adaptation. The �lter
lengths were 200 and the initial estimates were set to zeros
for all three algorithms. The NEE's for the three algorithms
are plotted in Fig. 6. It can be observed that the di�erence
between ADF and SADF is insigni�cant, and the NEEs
decreased much faster with TDADF. This phenomenon is
typical in the processing of all co-channel signals in the
experiment.
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5.3. Separation Performance
In this section, a subset of TIMIT database was chosen
to form a set of source signals of 156 sentence-pairs. The
co-channel mixed signals were generated from the source
signals using the �lters Hij 's described in Section 5.1 as in
Eq. (1). The average SIRs in y1(t) and y2(t) were 6.15 dB
and 5.38 dB, respectively. The SIRs after separation (in
v1(t) and v2(t)) using di�erent �lter lengths and algorithms
(SADF and TDADF) are summarized in Table 1. It can
be seen that the performances of SADF and TDADF were
about the same since the channel was stationary. The SIRs
improved as the �lter lengths increased from 100 to 400.
However, using �lter lengths longer than 400 did not further
improve the SIRs. By using GADF derived in Section 4, if
D1 and D2 delayed the signals by 100 samples, the SIRs
in v1(t) and v2(t) were 18.71 dB and 20.14 dB with �lter
lengths equal to 500. The SIRs improved to 19.01 dB and
23.87 dB when the delay became 300 samples and the �lter
lengths became 700. When the known H22 and H11 were
used in place of D1 and D2, the SIRs reached 24.55 dB and
19.88 dB.

6. CONCLUSION

In this paper, several signi�cant improvements are made
to the ADF algorithm in terms of reducing computa-
tional complexity, improving convergence rate, and han-
dling noncausal IIR �lters. A simpli�ed ADF is �rst pro-

Table 1. The signal-to-interference ratio after signal
separation using SADF and TDADF with di�erent
�lter lengths

SADF TDADF

Na,Nb SIR in v1 / v2 SIR in v1 / v2
100 14.61 / 14.31 dB 13.75 / 14.13 dB

200 15.83 / 16.40 dB 15.92 / 15.91 dB

300 17.18 / 17.60 dB 16.89 / 17.30 dB

400 18.38 / 18.91 dB 18.02 / 18.11 dB

500 18.41 / 18.49 dB 18.21 / 18.55 dB

600 18.64 / 18.77 dB 17.97 / 18.42 dB

800 18.01 / 18.37 dB 18.02 / 18.07 dB

posed to reduce the computational complexity of ADF from
O(N2

a +N2
b ) to O(Na +Nb) without signi�cant sacri�ce in

performance. A transform-domain ADF is next proposed to
improve the estimation convergence rate while keeping the
computational complexity low. Finally, a generalized ADF
is proposed to improve the system's ability in handling the
noncausal problem often encountered in co-channel speech
separation. The experimental results veri�ed the three
methods and showed signi�cant improvement in terms of
SIRs in the speech signals after processing. The separation
performance in terms of speech recognition accuracy will be
evaluated in the future work.
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