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ABSTRACT

A general framework based on majorization, Schur-concavity, and
concavity is given that facilitates the analysis of algorithm perfor-
mance and clarifies the relationships between existing proposed
diversity measures useful for best basis selection. Admissible spar-
sity measures are given by the Schur-concave functions, which are
the class of functions consistent with the partial ordering on vec-
tors known as majorization. Concave functions form an important
subclass of the Schur-concave functions which attain their minima
at sparse solutions to the basis selection problem. Based on a par-
ticular functional factorization of the gradient, we give a general
affine scaling optimization algorithm that converges to a sparse so-
lution for measures chosen from within this subclass.

1. INTRODUCTION

There has been considerable recent interest in the issue of best ba-
sis selection for sparse signal representation, including approaches
that select basis vectors by minimizing diversity measures subject
to the constraint

Ax = b; (1)

whereA is anm � n matrix formed using the vectors from an
overdetermined dictionary of basis vectors,m < n, and it is as-
sumed that rank(A) = m [3, 13, 1, 10].

The system of equations (1) has infinitely many solutions, and
the solution set is a linear variety denoted byLV (A; b) = xp +
N (A), wherexp is any particular solution to (1) andN (A) =
Nullspace ofA. Constrained minimization of diversity measures
results in sparse solutions consistent with membership inLV (A; b).
Sparse solutions refer tobasic solutions, solutions withm nonzero
entries, anddegeneratebasic solutions, solutions with less thanm
nonzero entries [5].

The degenerate basic solutions, if they exist, are desirable from
a sparsity objective. The nonzero entries of a sparse solution indi-
cate the basis vectors (columns ofA) selected. Popular diversity
measures used in this context are the Shannon Entropy, the Gaus-
sian Entropy, and thè(p�1) (p-norm-like) diversity measures,p �
1 [3, 13, 4, 9]. In [13], the Shannon entropy and the`(p�1),
0 < p � 1, measures, both evaluated on the “probability”~x =
jxj2=kxk22 2 R

n, are analyzed at length.1 It is shown that these
functions are consistent with diversity as measured by the partial

1We use the notation wherejxj, x2, x
1

2 , x � 0, etc., are defined
component-wise forx 2 Rn.

sums of the decreasing rearrangement of the elements of~x. Or-
dering of vectors according to their partial sums is known asma-
jorization and many results relating majorization to functional in-
equalities exist that can be exploited to more fully understand the
relationship between majorization and measures of diversity [2, 7].

Inspired by the insightful discussion given in Chapter 8 of
[13], we have been motivated to analyze and develop diversity
measures from the perspective of majorization theory and to con-
sider measures drawn from the general class of Schur-concave
functions, which are precisely the functions consistent with the
partial order induced by majorization. In this paper, we argue
that diversity measures should be drawn from the class of Schur-
concave functions [7] and, in particular, that good diversity mea-
sures are a subclass of concave functions. Proofs of the theorems
can be found in [12, 7, 9, 6].

2. THE MEASUREMENT OF DIVERSITY

2.1. Majorization and Schur-Concavity

To simplify the discussion, in this section we restrict our discus-
sion to the positive orthantQ1 � R

n. Let xb1c � � � � � xbnc
denote thedecreasing rearrangementof the elements ofx and de-
fine the sequence of partial sums [13],

Sx[k] =

kX
i=1

xbic :

Definition 1 (Majorization ofx by y)

x � y i� Sx[k] � Sy[k] ; Sx[n] = Sy[n] : (2)

Whenx � y, theny majorizesx (equivalently,x is majorized by
y). OftenSx[k] is normalized to one,Sx[n] = 1.

A plot of Sx[k] versusk is known as aLorentz curve[7], Lx,
andx � y iff Ly is everywhere above the curveLx. Whenx � y,
the curveLx graphically shows greater equality, or diversity, for
the values of the elements ofx 2 Q1 than is the case forLy.
The elements ofy are more concentrated in value, or less diverse,
than the elements ofx. This graphical representation explains why
majorization is also known as the Lorentz order. Lorentz curves
that intersect other than at an end-point correspond to vectors that
cannot be ordered by majorization.

Whenx � y, we say thatx is less concentrated (more diverse)
thany or, equivalently, thaty is more concentrated thanx. It is
natural to ask what functions�(�) are consistent with the diversity
ordering provided by majorization.



Definition 2 A function� is calledpermutation invariantiff it is
invariant with respect to all permutations of its argumentx, i.e.
�(x) = �(Px) for any permutation matrixP .

Definition 3 A function� : Rn ! R is said to beSchur-concave
if �(x) � �(y) wheneverx � y, andstrictly Schur-concave if in
addition�(x) > �(y) whenx is also not a permutation ofy.

A Schur-concave function is necessarily invariant with respect
to permutations of the elements ofx. For�(�) Schur-concave, it
is natural to considerx to be more diverse thany, if �(x) � �(y)
[7, 8]. An approach to sparse basis selection can then be based
on minimizing diversity, as measured by a Schur-concave function
�(�), subject to the constraint (1).

Theorem 1 A function� is Schur-concave onQ1 iff it is permu-
tation invariant and satisfies theSchur condition,

(x[i]� x[j])

�
@�(x)

@x[i]
�
@�(x)

@x[j]

�
� 0 ; 8x 2 Q1 : (3)

Furthermore, because of the assumed permutation invariance of
�(x), one only need verify (3) for a single set of specific values for
the pair(i; j).

Theorem 2 If �(�) is Schur-concave on the interior ofQ1, then
the scale invariant function defined by (x) = �(x=kxk1) is
also Schur-concave on the interior ofQ1.

2.2. Concave Functions as Measures of Diversity

Theorem 3 Let x; y belong to a permutation symmetric, convex
setC � R

n. Thenx � y iff �(x) � �(y) for all permutation
invariant and concave functions� : C ! R.

A particularly useful and tractable set of diversity measures is
provided by the subclass of separable concave functions.

Definition 4 A function� : Rn ! R is separableif there exists
g : R! R such that�(x) =

Pn

i=1
g(x[i]).

Theorem 4 Let x; y belong to a permutation symmetric, convex
setC � R

n. Thenx � y iff
Pn

i=1
g(x[i]) �

Pn

i=1
g(y[i]) for

every concave functiong : C ! R.

Theorem 5 Let� : C ! R be strictly concave and bounded from
below on a closed convex setC � R

n. Then� attains its local
minima (and hence its global minima) at boundary points ofC.

Theorem 6 Let � : C ! R be concave on a closed convex set
C � R

n which contains no lines. If� attains a global minimum
somewhere onC, it is also attained at an extreme point ofC.

Definition 5 A function� is said to besign invariantif �(x) =
�(�x); 8x 2 R

n, where�x = jxj 2 Q1 .

Theorem 7 Let� : Rn ! R be permutation invariant, sign in-
variant, and concave on the positive orthantQ1. Then the global
minimum of�(x) subject to the linear constraints of (1) is attained
at a basic solution.

Theorems 3–7 show that the permutation and sign invariant
concave functions are particularly good measures of diversity, if
our intent is to obtain sparse solutions to (1) by minimizing diver-
sity measures. The following two theorems can be used to identify
concave diversity measures.

Theorem 8 LetC � R
n be an open convex set and let� : C ! R

be differentiable onC. Then� is concave onC iff for any x 2 C
we have

r�(x)T (y � x) � �(x)� �(y) ; 8y 2 C : (4)

Furthermore� is strictly concave iff the inequality is strict for ev-
eryy 6= x.

Theorem 9 LetC � R
n be an open convex set and let� : C ! R

be twice differentiable onC. LetH(x) denote the Hessian matrix
of second partial derivatives of� evaluated at the pointx 2 C.
The function� is concave onC iff for anyx 2 C H(x) is negative
semidefinite. Furthermore� is strictly concave onC if H(x) is
negative definite for allx 2 C.

3. SCALAR MEASURES OF DIVERSITY

A general diversity measure is henceforth denoted byd(�) :Rn !
R, and is assumed to be both permutation and sign invariant. Be-
cause of the assumed sign invariance,d(x) = d(jxj), Schur-concavity
(or concavity) overQ1 corresponds to Schur-concavity (or, respec-
tively, concavity) over any other orthantQl. However, that this
does not guarantee Schur-concavity or concavityacrossorthants,
and in general this property will not be true.

3.1. Signomial Measures

S-functions. Here, we present a general class of separable con-
cave (and hence Schur-concave) functions that include as a special
case the class of̀(p�1) diversity measures defined by [13, 4, 9],

dp(x) = sgn(p)
nX
i=1

jx[i]jp; p � 1 : (5)

The generalization we are interested in is the subclass ofsignomi-
als given by the separable function,

dsig(x) =

nX
i=1

S(jx[i]j) =

qX
j=1

!j dpj (x) ; (6)

S(s) = sgn(p1)!1 s
p1 + � � �+ sgn(pq)!q s

pq ;

where pj < 1 ; pj 6= 0 ; and !j � 0 ;

or pj = 0; 1 ; and !j 2 R :

Unlike a regular polynomial,S(s) has fractional and possibly neg-
ative powers,pj � 1. With no loss of generality, in (6) we can
take
P

j
!j = 1.

We will refer to functions of the form (6) asS-functions. It
is readily shown thatdsig(x) has a diagonal, negative semidefinite
Hessian forx 2 Q1. Therefore, from Theorem 9 we know that
dsig(x) is concave on the interior of the positive orthantQ1 � R

n.
Furthermore, if there existsj such thatpj < 1, pj 6= 0, then
the Hessian is negative definite anddsig(x) is strictly concave on
the interior of the positive orthantQ1. By construction,dsig(x) is



separable and both sign and permutation invariant (and thus Schur-
concave). Furthermore,dsig(x) can be designed to be strictly con-
cave, insuring that a sparse solution can be obtained to the basis
selection problem by searching for a minimum ofdsig(x). Sum-
marizing our results, we have the following theorems.

Theorem 10 Letx; y belong to a symmetric, convex setC � Q1.
Thenx � y only if dsig(x) � dsig(y) for everyS-functiondsig :
C ! R.

Theorem 11 EveryS-functiondsig is concave on the interior of
Q1. Furthermore, anyS-function such that there existsj for which
pj < 1, pj 6= 0, is strictly concave on the interior ofQ1.

For p > 1, dp(x) of (5) is not Schur-concave and hence not con-
cave. Indeed, it is well known (and readily demonstrated) that
dp(x) is convexoverQ1 for p > 1.

Normalized S-functions. From the class ofS-functions, one can
define the1- and 2-normalizedS-functionsby taking

d
(1)
sig (x) = dsig(~x) ; ~x = jxj=kxk1 ; (7)

d
(2)
sig (x) = dsig(~x) ; ~x = jxj2=kxk22 : (8)

In [6] it is shown that with appropriate restrictions on the values of
the powerspj these measures are Schur-concave, but not (quite)
concave, functions ofx. A slightly weaker property than concav-
ity, almostconcavity, is defined in [6] and conditions are given that
ensure that the normalizedS-functions are almost concave.

3.2. Entropy Measures

Gaussian Entropy.Reference [13] proposes the use of the “loga-
rithm of energy” function,

HG(x) =

nX
i=1

log jx[i]j2 ; (9)

as a measure of diversity and points out that this can be inter-
preted as the entropy of a Gauss-Markov process; for this reason
we refer to (9) as theGaussian entropymeasure of diversity. It is
straightforward to demonstrate that the Hessian ofHG is every-
where positive definite on the positive orthantQ1, showing that
HG is strictly concave on the interior ofQ1 and hence Schur-
concave. The Gaussian entropy is therefore a good measure of
diversity and we expect that minimizingHG will result in sparse
solutions to the best basis selection problem.

In [9], an algorithm is presented to minimizeHG that indeed
shows very good performance in obtaining sparse solutions. It is
also shown that the algorithm to minimizeHG is the same as the
algorithm that minimizes (5) forp = 0 and can therefore be given
the interpretation of optimizing the numerosity (p = 0) measure
described by [4]. The interpretation ofHG as ap = 0 mea-
sure follows naturally from the literature on inequalities where
Exp(HG)= (

Q
i
jx[i]j)2 is shown to be intimately related to the

p = 0 norm [2, 9].

Shannon Entropy.References [3, 13, 4] have proposed the use of
the Shannon entropy function as a measure of diversity appropri-
ate for sparse basis selection. Given a probability distribution, the
Shannon entropy is well defined. However starting fromx, there is

some freedom in how one precisely defines this measure. Defining
the Shannon entropy functionHS(x) by

HS(x) = �

nX
i=1

~x[i] log ~x[i]; ~x = ~x(x) � 0 ; (10)

the differences arise in how one defines~x as a function ofx. These
differences affect the properties ofHS as a function ofx. It is well
known thatHS(�) defined as a function of~x by (10) is Schur-
concave [7, 13]. However it is generallynot the case thatHS(x) is
Schur-concave with respect tox [7]. In [6] the possible choices
~x = jxj, ~x = jxj=kxk1, and ~x = x2=kxk22 are considered.
Whereas the first choice can be shown to result in strict concav-
ity on the interior ofQ1, the second choice results in an almost
concave function (in the sense defined in [6]) while the last choice
of ~x[i] = x2=kxk22 is not even Schur-concave inx overQ1.

Renyi Entropy. A family of entropies, parameterized byp, is
described in [11]. TheseRenyi entropiesinclude, as a special
case, the Shannon entropy. Given a “probability”~x(x), ~x[i] � 0,P

i
~x[i] = 1, the Renyi entropy is defined for0 � p by

Hp(x) =
1

1� p
log

nX
i=1

~x[i]p =
1

1� p
log dp(~x) ; (11)

where

H1(x) = lim
p!1

Hp(~x) = �

nX
i=1

~x log ~x = HS(~x) ;

is the Shannon entropy of~x. Becauselog(�) is monotonic, we see
that for purposes of optimizationHp(~x) is equivalent todp(~x), and
hence is related to the normalizedS-functions mentioned above.
Thus, consistent with the discussion given in [4], one can also rea-
sonably refer to the normalizedp-norm-like measures̀(p�1) as
entropies.

It can be shown thatHp(jxj=kxk1) for 0 < p < 1 is almost
concave (in the sense of [6]) as a consequence of almost concav-
ity of d(1)p (x) for 0 < p < 1 and the fact thatlog(�) is an in-
creasing concave function. Forp > 1, Hp(jxj=kxk1) is not even
Schur-concave. Similarly,Hp(jxj

2=kxk22) is almost concave for
0 � p � 1

2
and not Schur-concave forp > 1=2 (showing that

H1(jxj
2=kxk22) is not Schur-concave).

4. SPARSE BASIS SELECTION

To minimize the general classes of concave diversity measures de-
veloped in this paper, we can extend the gradient factorization-
based methodology described in [9] and develop iterative algo-
rithms which converge to a basic solution of (1) [6].

4.1. The Scaling Matrix�(x)

A particularfactoredfunctional form for the gradient of the diver-
sity measured(x)with respect tox is essential for the development
of the algorithms,

rd(x) = �(x)�(x)x ; (12)

where�(x) is a positive scalar function, and�(x) is theScaling
Matrix, which is always chosen to bediagonal. An important dis-
tinction amongst the diversity measures from an algorithmic point



of view is whether their scaling matrix is positive definite or not.
For diversity measures with positive definite scaling matrices, we
have been able to develop simpler convergent algorithms.

4.2. A Generalized Affine Scaling Algorithm

The affine scaling methodology developed in [9] is readily adapted
to address the minimization of the more general diversity measures
developed in [6]. The first order necessary condition for a solution
to the concave constrained minimization problem,

min
x
d(x) subject to Ax = b ; (13)

naturally suggests an iterative algorithm of the form [9, 6]

xk+1 = ��1(xk)A
T (A��1(xk)A

T )�1b : (14)

This algorithm has desirable properties when the scaling matrix
�(x) is positive definite. As shown in [9, 6], when�(x) is pos-
itive definite it can be used to naturally define an Affine Scal-
ing Transformation (AST) matrix,W (x) = �� 1

2 (x) > 0, and
thereby establish a strong connection to affine scaling methods
used in optimization theory [5]. Hence the use of the terminol-
ogy “Affine Scaling” in connection with the algorithms developed
here and in [9].

Following the AST methodology [5], the scaled quantitiesqk
andAk+1 are defined by

Wk+1 =W (xk) ; xk =Wk+1qk ; Ak+1 = AWk+1 ;

assuming we have at hand a current estimated feasible solution,xk
(equivalently,qk) to the problem (13). We can then recast the opti-
mization problem (13) in terms of the scaled variableq =W�1

k+1x,

min
q
dk+1(q)

�
=d(Wk+1q) subject to Ak+1q = b :

We then obtain anupdatedfeasible estimate,qk+1, by projecting
the gradient ofdk+1(qk) onto the nullspace ofAk+1 and mov-
ing in this direction an amount proportional to a stepsize given by
1=�(xk) [9, 6]. This yields the algorithm

qk+1 = A+
k+1b ; xk+1 =Wk+1qk+1 ;

withA+
k+1 the Moore-Penrose pseudoinverse ofA, which is equiv-

alent to (14).

It is common in the affine scaling approach to use the specific
ASTW (x) given by

W (x) = diag (jx[i]j) ;

which corresponds to definingW (x) in terms of�(x) = �p(x)
for p = 0. In contrast, the algorithm (14) corresponds to a “natu-
ral” choice ofW (x) dictated by the particular choice of the spar-
sity measured(x).

Convergence of the algorithm can be shown for specific classes
of diversity measures,d(x), using the general convergence theo-
rems of Zangwill, and their variants [14, 9]. The strongest results
hold when a sign and permutation invariant concave diversity mea-
sured(x) has a positive definite scaling matrix,�(x) > 0 for all
x 2 R

n. This condition does not appear to be overly restrictive and
it admits the large class ofS-Functions described in Section 3.1.
This class satisfies the conditions of Theorem 12 and also contains
thep-norm-like,p � 1, concave sparsity measures.

Theorem 12 [6] Let d(x) be a sign and permutation invariant
function that is strictly concave on the positive orthantQ1 and for
which�(x) > 0 for all x 2 R

n. Assume that the setfxjd(x) �
d(x0)g is compact for allx0. Letxk be generated by the iteration
(14) starting withx0 feasible,Ax0 = b. Then for all �xk+1 6=
�xk, we haved(xk+1) < d(xk) and the algorithm converges to a
local minimumd(x�), xk ! x�, wherex� is a boundary point of
Ql \ LV (A; b) for some orthantQl.

Other functions can be proved to be minimized by the algo-
rithm (14), with convergence generally being shown on a case-by-
case basis. For example, it is proved in [9] that the 2-normalized
Shannon entropy–based algorithm is convergent.

As discussed above, the 2-normalized Shannon entropy diver-
sity measure corresponds to the 2-normalized Renyi entropy for
p = 1, which is not concave or Schur-concave, and therefore is not
expected to result in a minimum associated with complete sparsity;
a fact demonstrated in simulation [9]. Lack of concavity requires
a convergence proof via different means than the use of (4).

The requirement of the invertibility of�(x) in (14) appears
to give good reason to prefer the measures provided by the class
of (unnormalized)S-functions over the 1-norm and 2-normalized
scale invariantS-functions (which effectively include the normal-
ized Renyi entropies). In particular, the tractable form of the scal-
ing matrices forS-functions allows them to be readily inverted [6].
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