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ABSTRACT sums of the decreasing rearrangement of the elemerits Qfr-
dering of vectors according to their partial sums is knowmas
A general framework based on majorization, Schur-concavity, and jorization and many results relating majorization to functional in-
concavity is given that facilitates the analysis of algorithm perfor- equalities exist that can be exploited to more fully understand the
mance and clarifies the relationships between existing proposedrelationship between majorization and measures of diversity [2, 7].
diversity measures useful for best basis selection. Admissible spar- ) o ) . ) )
sity measures are given by the Schur-concave functions, which are___Inspired by the insightful discussion given in Chapter 8 of
the class of functions consistent with the partial ordering on vec- [13]: we have been motivated to analyze and develop diversity
tors known as majorization. Concave functions form an important Masures from the perspective of majorization theory and to con-
subclass of the Schur-concave functions which attain their minima Sider measures drawn from the general class of Schur-concave
at sparse solutions to the basis selection problem. Based on a pafUnctions, which are precisely the functions consistent with the
ticular functional factorization of the gradient, we give a general Partial order induced by majorization. In this paper, we argue
affine scaling optimization algorithm that converges to a sparse so-that diversity measures should be drawn from the class of Schur-
lution for measures chosen from within this subclass. concave functions [7] and, in particular, that good diversity mea-
sures are a subclass of concave functions. Proofs of the theorems

can be found in [12, 7, 9, 6].
1. INTRODUCTION
2. THE MEASUREMENT OF DIVERSITY
There has been considerable recent interest in the issue of best ba-
sis selection for sparse signal representation, including approache®.1. Majorization and Schur-Concavity
that select basis vectors by minimizing diversity measures subject

to the constraint To simplify the discussion, in this section we restrict our discus-

Az —b B sion to the positive orthan®: C R™. Letz|y) > -+ > x|y
- denote thalecreasing rearrangemenf the elements of and de-

where A is anm x n matrix formed using the vectors from an fine the sequence of partial sums [13],

overdetermined dictionary of basis vectons, < n, and it is as-

k
sumed that rankd) = m [3, 13, 1, 10].
Sz[k'] = ZxLiJ .
i=1

The system of equations (1) has infinitely many solutions, and
the solution set is a linear variety denoted by (A,b) = =, +
N(A), wherez,, is any particular solution to (1) an§/'(4) =
Nullspace ofA. Constrained minimization of diversity measures r <y iff S.[k] <S,[k], Se[n]=S,[n]. 2)
results in sparse solutions consistent with membershigiQA, b).
Sparse solutions refer lmsic solutionssolutions withm nonzero Whenz < y, theny majorizesz (equivalently,z is majorized by
entries, andlegeneratdasic solutions, solutions with less than y). OftenS,[k] is normalized to oneS, [n] = 1.
nonzero entries [5].

Definition 1 (Majorization ofz by y)

A plot of S, [k] versusk is known as d orentz curvd7], L.,
andz < y iff £, is everywhere above the cunge. Whenz < y,

The degenerate basic solutions, if they exist, are desirable from - . . .
g y the curvel, graphically shows greater equality, or diversity, for

a sparsity objective. The nonzero entries of a sparse solution indi- .
patsty ol p the values of the elements of € Q; than is the case foc,.

cate the basis vectors (columns 4f selected. Popular diversity The el t trated i | | di
measures used in this context are the Shannon Entropy, the Gaus- e elements of are more concentrated in value, or less diverse,

sian Entropy, and th&, <) (p-norm-like) diversity measureg, < tha_n the te_lem_entls @f‘kThiS grapItwki]call_repretsentczjationLexplatins why
1[3, 13, 4, 9]. In [13], the Shannon entropy and the<, majorization is also known as the Lorentz order. Lorentz curves

that intersect other than at an end-point correspond to vectors that

0 < p < 1, measures, both evaluated on the “probability’= e
P> P Ty cannot be ordered by majorization.

|z|?/||z||3 € R™, are analyzed at length.lt is shown that these
functions are consistent with diversity as measured by the partial ~ Whenz < y, we say that: is less concentrated (more diverse)
thany or, equivalently, thay is more concentrated than It is

l\We use the notation where|, =2, m%, z > 0, etc., are defined natural to ask what functiong(-) are consistent with the diversity
component-wise fox € R™. ordering provided by majorization.




Definition 2 A function¢ is calledpermutation invarianiff it is
invariant with respect to all permutations of its argumenti.e.
¢(z) = ¢(Pz) for any permutation matrix.

Theorems 3-7 show that the permutation and sign invariant
concave functions are particularly good measures of diversity, if
our intent is to obtain sparse solutions to (1) by minimizing diver-
sity measures. The following two theorems can be used to identify

Definition 3 A functiong : R* — R is said to beSchur-concave ~ concave diversity measures.

if ¢(x) > ¢(y) wheneverr < y, andstrictly Schur-concave if in

addition(z) > (y) whenz is also not a permutation of. Theorem 8 LetC C R™ be an open convex setandet C — R

be differentiable orC. Then¢ is concave ort iff foranyz € C

L oo . . we have
A Schur-concave function is necessarily invariant with respect

to permutations of the elements ®f For ¢(-) Schur-concave, it Vo) (y —z) > ¢(x) — d(y), (4)

is natural to consider to be more diverse than if ¢(z) > ¢(y)

[7, 8]. An approach to sparse basis selection can then be basedFurthermoreg is strictly concave iff the inequality is strict for ev-
on minimizing diversity, as measured by a Schur-concave function ery y # «.

¢(+), subject to the constraint (1).

VyecC.

Theorem 9 LetC C R™ be an open convex setanddet C — R
be twice differentiable of. Let H(z) denote the Hessian matrix
of second partial derivatives @f evaluated at the point € C.
The functionp is concave o iff for anyz € C H(z) is negative
semidefinite. Furthermorg is strictly concave or€ if H(z) is
negative definite for alt € C.

Theorem 1 A function¢ is Schur-concave o@); iff it is permu-
tation invariant and satisfies tHechur condition

(ali] - 2[4]) @i([f]) - %ﬁ}jf) <0, VeeQi. ()

Furthermore, because of the assumed permutation invariance of
¢(x), one only need verify (3) for a single set of specific values for
the pair (¢, 7).

3. SCALAR MEASURES OF DIVERSITY

A general diversity measure is henceforth denoted by :R" —

R, and is assumed to be both permutation and sign invariant. Be-
cause of the assumed sign invariant{e;) = d(|z|), Schur-concavity
(or concavity) oveQ; corresponds to Schur-concavity (or, respec-
tively, concavity) over any other orthad?;. However, that this
does not guarantee Schur-concavity or concaadgpssorthants,

and in general this property will not be true.

Theorem 2 If ¢(-) is Schur-concave on the interior ¢f;, then
the scale invariant functionp defined by (z) = ¢(z/||z|1) is
also Schur-concave on the interior €.

2.2. Concave Functions as Measures of Diversity

Theorem 3 Letz,y belong to a permutation symmetric, convex 3.1. Signomial Measures
setC C R™. Thenz < yiff ¢(x) > ¢(y) for all permutation

; . . S-functions. Here, we present a general class of separable con-
invariant and concave functions: C — R. P g P

cave (and hence Schur-concave) functions that include as a special

. . . . case the class diversity measures defined by [13, 4, 9],
A particularly useful and tractable set of diversity measures is <) y vl ]

provided by the subclass of separable concave functions. n
o _ , _ _ dp(x) =sgnp) Y _leli]l”, p<1. (5)
Definition 4 A functiong : R® — R is separabléf there exists i1
: R — Rsuchthatp(z) = S g(z[d]).
g (@) Zl:l 9(eli) The generalization we are interested in is the subclasgobmi-

Theorem 4 Letz,y belong to a permutation symmetric, convex alsgiven by the separable function,

setC C R™. Thenz < yiff 37" g(«[i]) > D7, g(yld]) for

n q
every concave functiopn: C — R. deig(z) = Z S(lz[i]]) = ij dy, (z), (6)
i=1 j=1
Theorem 5 Let¢ : C — R be strictly concave and bounded from S _ P Pq
below on a closed convex setC R™. Theng attains its local (s) sgn(py)wr 5™ -+ sgn(pg) wa 5™,
minima (and hence its global minima) at boundary pointg .of where p; < 1, p;j#0, and w; >0,
or pj = 0,1, and w;€R.

Theorem 6 Let¢ : C — R be concave on a closed convex set
C C R™ which contains no lines. kb attains a global minimum
somewhere o4, it is also attained at an extreme point©f

Unlike a regular polynomiak(s) has fractional and possibly neg-
ative powersp; < 1. With no loss of generality, in (6) we can
take} . w; =1.

Definition 5 A function¢ is said to besign invariantif ¢(z) =
¢(z),Vz € R", wherez = |z| € Q; .

Theorem 7 Let¢ : R — R be permutation invariant, sign in-
variant, and concave on the positive orthadt. Then the global
minimum ofp(x) subject to the linear constraints of (1) is attained
at a basic solution.

We will refer to functions of the form (6) aS-functions It
is readily shown thadsi; (z) has a diagonal, negative semidefinite
Hessian forr € Q. Therefore, from Theorem 9 we know that
dsig () is concave on the interior of the positive orthg@ht C R™.
Furthermore, if there existg such thatp; < 1, p; # 0, then
the Hessian is negative definite adlig, () is strictly concave on
the interior of the positive orthar®,. By constructiondis () is



separable and both sign and permutation invariant (and thus Schursome freedom in how one precisely defines this measure. Defining

concave). Furthermord,;g (z) can be designed to be strictly con-

cave, insuring that a sparse solution can be obtained to the basis

selection problem by searching for a minimumdafz (z). Sum-
marizing our results, we have the following theorems.

Theorem 10 Letz, y belong to a symmetric, convex getC Q;.
Thenz < y only if dsig(z) > dsig(y) for everyS-functiondsi, :
C—R.

Theorem 11 EveryS-functionds;g is concave on the interior of
Q. Furthermore, anys-function such that there exist$or which
p; < 1,p; # 0, is strictly concave on the interior @; .

Forp > 1, dp(x) of (5) is not Schur-concave and hence not con-
cave. Indeed, it is well known (and readily demonstrated) that
dp(x) is convexover @ forp > 1.

Normalized S-functions. From the class of-functions, one can
define thel- and 2-normalized -functionsby taking

di)(x) = dug(@), #=lz|/||zls, (7)
dQ)(x) = dag(@®), T=z/|l3. ®)

In [6] it is shown that with appropriate restrictions on the values of

the Shannon entropy functidis (z) by

n

=Y #lillog i,

i=1

Hs(z) = =#(z)>0, (10)

the differences arise in how one defirieas a function of. These
differences affect the properties Hfs as a function of. It is well
known thatHs(-) defined as a function of by (10) is Schur-
concave [7, 13]. However it is generaliptthe case thalls (z) is
Schur-concave with respect 10[7]. In [6] the possible choices

i = |z|, & = |z|/|lz|l;, andi = x*/||z||? are considered.
Whereas the first choice can be shown to result in strict concav-
ity on the interior of @, the second choice results in an almost
concave function (in the sense defined in [6]) while the last choice
of Z[i] = 2*/||z||3 is not even Schur-concave inover Q;.

Renyi Entropy. A family of entropies, parameterized by is
described in [11]. Thes®&enyi entropiesnclude, as a special
case, the Shannon entropy. Given a “probabiligyt), £[:] > 0,
>_; Z[i] = 1, the Renyi entropy is defined for< p by

n
1 1
logE z[i]f =
l—p " & ] 1-p

Hy(z) =

logdy(z),  (11)

the powergp; these measures are Schur-concave, but not (quite) Where

concave, functions aof. A slightly weaker property than concav-
ity, almostconcavity, is defined in [6] and conditions are given that
ensure that the normaliz&ifunctions are almost concave.

3.2. Entropy Measures

Gaussian Entropy. Reference [13] proposes the use of the “loga-
rithm of energy” function,

He(z) =Y loglali]®, ©)

n

> #logs = Hs(3),

i=1

Hi(z) = lim Hy(z) = —

p—1

is the Shannon entropy @f Becauséog(-) is monotonic, we see
that for purposes of optimizatiaki, () is equivalent tal, (), and
hence is related to the normalizédfunctions mentioned above.
Thus, consistent with the discussion given in [4], one can also rea-
sonably refer to the normalizggtnorm-like measureg,<,, as
entropies.

It can be shown thakZ,, (|z|/||z||:) for 0 < p < 1 is almost
concave (in the sense of [6]) as a consequence of almost concav-

as a measure of diversity and points out that this can be inter-ity of dy”(z) for 0 < p < 1 and the fact thatog(-) is an in-
preted as the entropy of a Gauss-Markov process; for this reasorfreasing concave function. Fpr> 1, Hy(|z|/||z[[1) is not even

we refer to (9) as th&aussian entropyneasure of diversity. It is
straightforward to demonstrate that the HessiarHef is every-

where positive definite on the positive orthadt, showing that
Hg is strictly concave on the interior of; and hence Schur-

concave. The Gaussian entropy is therefore a good measure of

diversity and we expect that minimizing ¢ will result in sparse
solutions to the best basis selection problem.

In [9], an algorithm is presented to minimiZé that indeed

shows very good performance in obtaining sparse solutions. It is

also shown that the algorithm to minimiZé&; is the same as the
algorithm that minimizes (5) fop = 0 and can therefore be given
the interpretation of optimizing the numerosity £ 0) measure
described by [4]. The interpretation diz as ap = 0 mea-
sure follows naturally from the literature on inequalities where
Exp(He)= ([, |=[:]])* is shown to be intimately related to the
p=0norm [2, 9].

Shannon Entropy. References [3, 13, 4] have proposed the use of

the Shannon entropy function as a measure of diversity appropri-

Schur-concave. Similarlyi, (|z|?/||z||3) is almost concave for
0 < p < £ and not Schur-concave fgr > 1/2 (showing that

Hi(|z|*/||z||3) is not Schur-concave).

4. SPARSE BASIS SELECTION

To minimize the general classes of concave diversity measures de-
veloped in this paper, we can extend the gradient factorization-
based methodology described in [9] and develop iterative algo-
rithms which converge to a basic solution of (1) [6].

4.1. The Scaling Matrix I1 ()

A particularfactoredfunctional form for the gradient of the diver-
sity measurd(z) with respect tar is essential for the development

of the algorithms,
Vd(z) = a(z)I(x)z, (12)

wherea(x) is a positive scalar function, and(z) is theScaling

ate for sparse basis selection. Given a probability distribution, the Matrix, which is always chosen to lskagonal An important dis-

Shannon entropy is well defined. However starting frorthere is

tinction amongst the diversity measures from an algorithmic point



of view is whether their scaling matrix is positive definite or not.
For diversity measures with positive definite scaling matrices, we
have been able to develop simpler convergent algorithms.

4.2. A Generalized Affine Scaling Algorithm

The affine scaling methodology developed in [9] is readily adapted

Theorem 12 [6] Letd(z) be a sign and permutation invariant
function that is strictly concave on the positive orthght and for
which I (z) > 0 for all z € R™. Assume that the sétr|d(z) <
d(zo)} is compact for allz. Letz), be generated by the iteration
(14) starting withx, feasible,Azo = b. Then for allZ;y, #
Tk, we haved(zr+1) < d(zi) and the algorithm converges to a
local minimumd(z*), x, — z*, wherez* is a boundary point of

to address the minimization of the more general diversity measuresg, n LV (A,b) for some orthan@Q;.

developed in [6]. The first order necessary condition for a solution
to the concave constrained minimization problem,

mind(z) subjectto Ax =10, (23)
naturally suggests an iterative algorithm of the form [9, 6]

Tppr = I (ap) A" (AT (zp) AT "0 (14)

Other functions can be proved to be minimized by the algo-
rithm (14), with convergence generally being shown on a case-by-
case basis. For example, it is proved in [9] that the 2-normalized
Shannon entropy—based algorithm is convergent.

As discussed above, the 2-normalized Shannon entropy diver-
sity measure corresponds to the 2-normalized Renyi entropy for
p = 1, which is not concave or Schur-concave, and therefore is not

This algorithm has desirable properties when the scaling matrix expected to result in a minimum associated with complete sparsity;

II(z) is positive definite. As shown in [9, 6], wheli (z) is pos-
itive definite it can be used to naturally define an Affine Scal-
ing Transformation (AST) matrixiV (z) = H‘%(m) > 0, and

thereby establish a strong connection to affine scaling methodst

used in optimization theory [5]. Hence the use of the terminol-
ogy “Affine Scaling” in connection with the algorithms developed
here and in [9].

Following the AST methodology [5], the scaled quantitigs
and Ay, are defined by

Wit1 =W(zr), or=Witiqr, Ar+1=AWrp,

assuming we have at hand a current estimated feasible solution,
(equivalentlygy) to the problem (13). We can then recast the opti-
mization problem (13) in terms of the scaled variaple ijrllx,

min dk+1(q) éd(Wk_Hq) SUbjeCt to Ak+1q =b.
q

We then obtain ampdatedfeasible estimatey;.+1, by projecting

the gradient ofdy+1(gx) onto the nullspace ofi;4+: and mov-

ing in this direction an amount proportional to a stepsize given by
1/a(zk) [9, 6]. This yields the algorithm

Q1 = Af b, Trgr = Wigaget

with Ak++1 the Moore-Penrose pseudoinverselofvhich is equiv-
alent to (14).

Itis common in the affine scaling approach to use the specific
AST W (x) given by

W (z) = diag (l2[4]]) ,

which corresponds to defining (z) in terms ofI1(x) = II,(x)

for p = 0. In contrast, the algorithm (14) corresponds to a “natu-
ral” choice of W (z) dictated by the particular choice of the spar-
sity measurel(z).

Convergence of the algorithm can be shown for specific classes[10]

of diversity measuresi(z), using the general convergence theo-
rems of Zangwill, and their variants [14, 9]. The strongest results

hold when a sign and permutation invariant concave diversity mea-[12]

sured(z) has a positive definite scaling matritg,(z) > 0 for all

x € R™. This condition does not appear to be overly restrictive and
it admits the large class &f-Functions described in Section 3.1.
This class satisfies the conditions of Theorem 12 and also contain
thep-norm-like,p < 1, concave sparsity measures.

{141

a fact demonstrated in simulation [9]. Lack of concavity requires
a convergence proof via different means than the use of (4).

The requirement of the invertibility of7 (x) in (14) appears
0 give good reason to prefer the measures provided by the class
of (unnormalized)S-functions over the 1-norm and 2-normalized
scale invariantS-functions (which effectively include the normal-
ized Renyi entropies). In particular, the tractable form of the scal-
ing matrices foS-functions allows them to be readily inverted [6].
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