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ABSTRACT

An analysis of a discrete time-frequency distribution yields

a new periodic wide band probing signal for use in unknown

system identi�cation. The derivation is based on mathe-

matical properties of the discrete Wigner distribution. Like

the continuous distribution, the discrete version also sat-

is�es the covariance property, meaning transformations in

the time-frequency plane are equivalent to transformations

in the time domain. By utilizing this property, the lin-

early swept frequency measurement is extended to discrete,

periodic signals. The resulting probing signal possesses fa-

vorable characteristics such as a short illumination time re-

quirement and good resistance to noise. The performance of

the proposed probing method is compared with m-sequence

methods and chirp signal methods.

1. INTRODUCTION

A common way to analyze an unknown linear system
is to apply a known input signal and use processing
techniques on the output signal to obtain information
about the system, such as its frequency response. This
probing signal method has found use in a variety of
applications, including underwater acoustics, [1], room
acoustics, [2], and digital mobile radio [3]. While the
method is straightforward, its implementation depends
on the type of probing signal chosen as an input. There
has been much discussion in the literature about what
type of signal to use, although there have not been
many direct comparisons of the performance of di�er-
ent signals. With the advent of implemented digital
systems, it is especially important to consider the per-
formance of discrete-time signals. Furthermore, since
we are typically interested in N samples of the fre-
quency response, it is desirable to use N -periodic sig-
nals for probing systems.
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Two popular choices of probing signals are maximum-
length sequences (or m-sequences, comprised of 1s and
�1s in a speci�c order) and chirps (complex linear

frequency-modulated signals of the form ejct
2

for some
constant c). Each of these can be used to produce a
wide-band frequency response estimate from a single
measurement. An excellent discussion of m-sequences
for use in probing signal applications can be found in
[4, 5]. An m-sequence is suited for this purpose be-
cause its circular autocorrelation function is impulse-
like if the length of the sequence is su�ciently long,
[6]. A frequency response estimate is obtained by ap-
plying an m-sequence to a system, and then computing
the Fourier transform of the circular autocorrelation of
the output.

A practical implementation of chirps for probing
systems is discussed in [7, 8]. In these references, an
estimate is obtained by applying a sampled chirp (a
discretized, continuous chirp signal) to a system, and
then dividing the Fourier transform of the output by
the Fourier transform of the input chirp. In the contin-
uous domain, another implementation involving chirps
has been presented in the context of the linearly swept
frequency measurement, [9]. This measurement is com-
puted by applying an analog chirp signal to a sys-
tem, multiplying the output by another chirp, and then
convolving that output with another chirp. However,
the computational demands of this method when dis-
cretized are greater than those for m-sequences or the
method given by [7, 8].

Beyond practical considerations, there is a theoret-
ically useful connection between the linearly swept fre-
quency measurement and time-frequency analysis. In
[9, 10], Poletti illustrated how the (continuous) Wigner
distribution could be used to analyze the steps involved
in this measurement. By relating shears in the time-
frequency plane with chirps in the time-domain, Po-
letti was able to suggest an improvement in the exist-
ing technique. The key to Poletti's analysis was that



the continuous Wigner distribution satis�es the covari-
ance property, which directly relates transformations in
time-frequency to transformations in the time-domain.

Recently, a formulation of the discrete Wigner dis-
tribution was given which also satis�es the covariance
property, [11]. Using this formulation, we derive a
discrete-time, discrete-frequency linearly swept frequency
measurement. The resulting probing signal method
eliminates the computational disadvantages of the dis-
cretized continuous measurement of [9, 10]. We will
then compare the performance of this new periodic,
wide band probing signal with m-sequences and the
chirps suggested by [7, 8].

2. PROPERTIES OF A GOOD PROBING

SIGNAL

If there were no peak power limitations and no noise,
the simplest way to obtain a frequency response esti-
mate would be to send an impulse through the system
and compute the Fourier transform of the output. In
applications, however, these practical limitations must
be considered. The suitability of a probing signal with
respect to peak power restrictions and noise can be
quanti�ed by computing its crest factor (CF ), which is
de�ned for a signal s to be, [12],

CF (s) =
jjsjjinf
jjsjj2 � 1: (1)

Intuitively, a signal most impervious to noise for a given
peak power limitationwill have maximumamplitude at
every sample, which would correspond to a crest factor
of 1. A length-N impulse signal has a crest factor ofp
N . On the other hand, both m-sequences and chirp

signals have a crest factor of 1, which explains why
both are widely utilized.

In addition to crest factor, there are other practical
considerations. One is the duration of the input signal.
A shorter signal will require less power consumption
and reduce the so-called illumination time of the probe.
Another consideration is the amount of computation
required for processing of the output signal. Also, for
the case of a real (not complex), implemented system,
a chirp signal requires two measurements to obtain an
estimate due to its imaginary component. We will take
all of these aspects into account when comparing the
performance of these signals.

3. COVARIANCE AND A DISCRETE

TIME-FREQUENCY PROBING SIGNAL

Covariance is a property that relates unit-norm linear
transformations of coordinates of the Wigner distribu-

tion to unitary transformations in the time-domain.
Speci�cally, if a given unit-norm linear transformation
is applied to the Wigner distribution of a signal, there is
a corresponding unitary transformation that can be ap-
plied to the signal in the time-domain which yields the
Wigner distribution of the transformed signal. Such
unit-norm linear transformations of the time-frequency
plane are called symplectic transformations. This prop-
erty is stated mathematically as follows: applying a
symplectic transformation, A, to a Wigner distribu-
tion Wx is equivalent to �rst applying a unitary trans-
formation which depends on A, U(A), to x, and then
computing the Wigner distribution i.e.

Wx(A(t; f)) = WU(A)x(t; f): (2)

In [9, 10], the frequency response of a system with
impulse response h(t) is

H(t) = e�
j�

4

hh
h(t) � ej�t2

i
e�j�t

2
i
� ej�t2 ; : (3)

The algorithm implied by this equation has three steps.
In the �rst step, the input chirp signal is convolved
with the impulse response. Convolution of h(t) with
a chirp corresponds to a shear in the time-frequency
plane. That is, if s(t) = ej�t

2
, then

Wh(As(t; f)) = WU(A
s
)h(t; f); (4)

where

As =

�
1 �1
0 1

�
: (5)

The second step involves multiplication by the chirp
s�(t). This corresponds to the transformation of time-
frequency coordinates given by A�1

s . The third step is
again convolution with s(t). The overall sequence of
shearing transformations involved in a swept frequency
measurement is given by the composition

As � A�1
s � As (6)

We now extend this concept to the discrete-time,
discrete-frequency domain. The impulse response of
the sytstem is given by h(n), and the goal is to compute
N frequency samples of this system. In the discrete do-
main, the correspondence between chirps in time and
shears in time-frequency occurs when N is odd, [13],
so we will restrict our discussion to this case. In the
discrete time-frequency plane, we want to apply the
same sequence of shearing operations as given in (6).
The corresponding time domain operation is not a sam-
pled version of the continuous chirp signal. Instead, the



"chirp" corresponding to As for discrete-time, discrete-
frequency is the N -periodic signal given by, [14],

sd(n) = e
j2�(2�1n2)N

N ; (7)

where 2�1 is the group-theoretic inverse of 2 in the
group of integers modulo N , and the notation (a)N
means a mod N . Also, the time-domain operation is
not regular convolution, but circular convolution, [14].
Thus, the sequence of shearing transformations from
(6) corresponds to the discrete swept-frequency mea-
surement

H(n) = � [[h(n)~ sd(n)] s
�
d(n)]~ sd(n); (8)

where � = 1p
N
e
j�[(N)8�1]

4 : The algorithm implied by

(8) requires further explanation because of the initial
circular convolution. Since the system h(n) can only
be probed via a standard �ltering operation (regular
convolution), we need to modify the �rst step of the
discrete swept-frequency measurement. Since circu-
lar convolution is equivalent to regular convolution fol-
lowed by time-aliasing, [15], the output of the system
needs to be time-aliased before subsequent processing.
The resulting processing scheme is presented in the
block diagram in �gure 1.

4. COMPARISON OF METHODS

In this section, we compare the performance of m-
sequences and sampled chirps with that of the group-
theoretic chirp (the signal in (7)). For each method,
we generate N = 16 equally spaced samples of the fre-
quency response (corresponding to a length-31 prob-
ing signal) for the length-155 linear, time-invariant low
pass �lter depicted in �gure 2. We add white Gaussian
noise to the output signal prior to the post-processing
steps to simulate noisy conditions. Since the system
h(n) is real, we will penalize the complex probing signal
methods (which e�ectively require two measurements)
by comparing a single complex probing signal estimate
with the average of two m-sequence estimates. For each
method, we compute the absolute error of the average
of 100 estimates (or 200 for the m-sequence estimates).

Figure 2 contains the N = 16 sample estimates of
the frequency response H(k) computed via the pro-
posed method. A scatter plot of the absolute error for
estimates obtained by the three probing signal meth-
ods is shown in �gure 3. The results for the proposed
method and the m-sequence method are both good
(and roughly equivalent). In this example, the sam-
pled chirp method does not yield satisfactory results
because it does not compute equally spaced samples
of the frequency response when the desired number of

samples is less than the length of the �lter. We do note
that when the number of samples desired is greater
than the length of the �lter, all three probing signal
methods produce very similar error performance.

We now examine some other considerations. First,
as given by [8], the sampled chirp probing method re-
quires an illumination time equal to 2 periods of the
sampled chirp (i.e. 2N ). The group-theoretic chirp
probing method and the m-sequence method require
only 1 period. We make the important observation,
however, that the sampled chirp probing method can
be modi�ed so that only 1 period is required for an
estimate by time-aliasing the output of a 1 period in-
put sampled chirp before further processing. Computa-
tionally, the post-processing demands of each method
are roughly similar. For the m-sequence method, post-
processing entails the computation of the length-N cir-
cular auto-correlation function followed by a length-N
discrete Fourier transform. The sampled chirp method
(with reduced illumination time) requires a time-alias
by N step, a length-N discrete Fourier transform, and
then a length-N division. The group-theoretic chirp
method involves a time-alias by N step, a length-N
multiplication, and a length-N circular convolution.
Finally, the m-sequence method possesses a further re-
striction that the number of samples obtained satisfy
N = 2M �1 for some positive integer M (which is why
the example chosen satis�ed this requirement).

5. CONCLUSION

The results of the preceding section suggest a few con-
clusions regarding choice of a discrete, periodic wide-
band probing signal. When only a small number of
samples are required (i.e. a short illumination time),
either the proposed method or the m-sequence method
is suitable. If the number of samples desired cannot be
expressed as N = 2M � 1, the proposed probing sig-
nal method should be used. When a large number of
samples of a real input/output system are desired, any
of the methods will yield good performance, although
some of our work indicates that m-sequences do slightly
better. We also mention that if the system under study
happens to be complex input/output, then the complex
probing signal methods would be preferred.

While the method proposed here performs satis-
factorily, a more signi�cant result is that we have de-
scribed a practical application of mathematical prop-
erties relevant to time-frequency analysis. The group-
theoretic chirp signal is a direct result of study of the
covariance property for the discrete Wigner distribu-
tion. Many articles in the literature have focused on
the importance of various time-frequency properties.



The authors hope we have demonstrated that covari-
ance is such a property due to its usefulness in an actual
application.
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Figure 1: A block diagram of a discrete linearly swept fre-
quency measurement.
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Figure 2: The system H(k) to be estimated along with N =
16 sample estimates generated by the proposed method.
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Figure 3: A comparison of the absolute error of the three
methods for N = 16 equally spaced DFT samples.


