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ABSTRACT

Although reconstruction of a nonminimum-phase system
excited by a stationary non-Gaussian white input is only
possible using higher-order statistics (HOS) of the system
output, there has been a lot of criticism in the literature
against the amount of data required for keeping estimation
errors low, and the complexity involved. Recently several
attempts for reducing the variance of the HOS estimates
have appeared. In the case of bandlimited signals, we have
demonstrated via simulations that the estimation variance
can be reduced if \good" slices, instead of the whole bis-
pectrum, are used. This suggests a potential reduction of
variance in the system estimates, without having to re-
sort to long observations. In this paper we justify theo-
retically the dependence of the system estimate variance on
the bispectrum slice, and the criterion of slice selection. We
also present simulation results, where the selected-slices ap-
proach appears to result in much lower estimation variance,
as compared to other entire-bispectrum based approaches,
for data lengths as low as 64 samples.

1. INTRODUCTION

Higher-order spectra (HOS) have been applied successfully
to the problem of system reconstruction, mainly because of
their ability to preserve the true system phase, and their
robustness to additive Gaussian noise of unknown covari-
ance. However, there has been a lot of criticism in the lit-
erature against the amount of data required for keeping es-
timation errors low, and the complexity involved. Recently
several attempts for reducing the variance of the HOS es-
timates appeared, such as using low rank approximations
of HOS estimators [1]. In the case of bandlimited signals,
we have demonstrated via simulations [6], that the estima-
tion variance can be reduced if \good" slices instead of the
whole bispectrum are used. For such signals, there are re-
gions where, in theory, the bispectrum is identically zero.
In practice, however, the bispectrum estimate will contain
regions where the useful signal information will be low and
corrupted by errors. Avoiding such regions can result in
improved estimation. Methods that use �xed bispectrum
slices [4], [3] cannot be applied to the reconstruction of
bandlimited systems, since the ideal bispectrum along these
slices can be zero. Moreover, in the presence of noise and
�nite data records, bispectrum estimates along �xed slices,

such as the axes and the main diagonal, can exhibit high
estimation variance, and since single slices are used, there
is no averaging mechanism to reduce estimation errors.

It was shown in [6] that unique identi�cation of an arbi-
trary system can be performed, based on any two horizontal
slices of the output discretized n-th order spectrum, n � 3,
of the system, as long as the distance between the slices and
the grid size satisfy a simple condition. It was observed in
[6] that the use of slices selected according to a certain cri-
terion instead of the whole higher-order spectrum, could
lead to reduced estimation variance. This suggests that we
could potentially be able to reduce variance in the system
estimates without resorting to long observations. In this
paper we present the theoretical justi�cation of both the
dependence of the variance of the system estimates on the
HOS slice used, and the usage of the criterion for slice se-
lection, proposed in [6]. We also show, based on simulation
examples, that even in the case of very short output se-
quence records, the selected-slices approach results in much
lower estimation variance, as compared to other approaches
that use the entire bispectrum for estimation, such as the
methods of [2], and [7].

2. RECONSTRUCTION FROM ANY PAIR OF
HORIZONTAL HOS SLICES OF THE SYSTEM

OUTPUT

Consider a stationary process x(n) given by:

x(n) = e(n) � h(n) +w(n); (1)

where e(n) is an i.i.d. non-Gaussian process with zero mean
and �nite n-th order cumulant 
en 6= 0, for n � 2; w(n) is
a stationary zero-mean Gaussian process of unknown co-
variance which is assumed independent of e(n); h(n) is the
unknown impulse response of a generally mixed-phase, com-
plexLTI system. It is assumed that h(n) does not have zeros
on the unit circle, however this assumption can be relaxed.

In this paper we consider reconstruction from third-
order spectra. A generalization of the results to the n-th or-
der spectra case can be found in [5]. The frequency-domain
bispectrum of x(n) is given by

C
x
3 (!1; !2) = 


e
3H(!1)H(!2)H(�!1 � !2); (2)

with H(!) denoting the frequency response of the system.
The following proposition holds:



Proposition 1 [5] For the process x(n) described by (1),
h(n) is always identi�able, within a (complex) constant
and a circular shift, from any two slices of the discretized
output bispectrum, i.e, Cx

3 (
2�
N k; 2�N l1) and Cx

3 (
2�
N k; 2�N l2),

k = 0; . . . ;N � 1, if and only if N and r = jl1 � l2j are co-
prime integers. If h(n) is real, then it is identi�able, within
a constant and a circular shift, based on a single slice of
the discretized output bispectrum, i.e., Cx

3 (
2�
N
k; 2�

N
l), if and

only if N and r = 2l are coprime integers.

The proof of this proposition can be found in [5].
By evaluating (2) at discrete frequencies ! = 2�

N
k,

k 2 [0; . . . ;N�1], we obtain the discrete bispectrum of x(n),
denoted Cx

3 (k; l). Let hl = [logH(1); . . . ; logH(N � 1)]T

be the (N � 1) � 1 vector of the unknown samples of the
logarithm of the frequency response of the system (we set
H(0) = 1 arbitrarily, thus reconstructing the system within
a complex constant). Then hl can be obtained as the solu-
tion to the system

Ahl = c; (3)

where c is a (N � 1)� 1 vector of bispectrum values along
the slices (:; l) and (:; l + r), with

ci = logCx
3 (�i�r� l; l)� log Cx

3 (�i�r� l; l+r)+cl;r (4)

(i = 0; 1; . . . ;N � 2), and

cl;r =
1

N

N�1X
k=0

[logCx
3 (k; l+ r)� logCx

3 (k; l)] (5)

Matrix A is a (N � 1)� (N � 1) sparse matrix with special
structure: its �rst row contains a one at the r-th column
and zeros elsewhere. Its k-th row contains a (�1) at column
(k� 1)moduloN , and a one at column (k+ r� 1)moduloN .

It can be proved, [5], thatmatrix A is nonsingular if and
only if N and r are coprime integers. Using this method,
the logarithm of two bispectrum slices, (:; l) and (:; l + r),
is used to recover the impulse response h(n) of the system.
Although the bispectrum phase appears implicitly in the
expressions, only the principal argument is actually needed.

Since we are dealing with bandlimited systems, we
should consider the case of h(n) having zeros on the unit
circle. This means that H(k) = 0 for some k, and in turn
Cx
3 (m;l) = 0 for some (m; l), the logarithm of which is

unde�ned. However, we can change the spacing between
samples, or equivalently re-estimate the bispectrum in a
di�erent grid of frequency points to surpass that problem.

By using di�erent pairs of bispectrum slices that satisfy
the condition of Proposition 1, we can average the recon-
structed systems in the time-domain (after scaling and shift-
ing them appropriately), thus reducing the e�ects of noise
and �nite data lengths in the estimation of cumulants.

Signi�cant computational savings result when the input
process e(n) in (1) is cyclostationary. To see that, note that
we can write:

X(l)X(k)X(�k� l) = FfX(l)x(n) � x(�n)e�j
2�

N
lng

= FfNX(l)Rl=N
x (n)g (6)

where k = 0; . . . ;N � 1, Rl=N
x (n) is the well-known ambi-

guity function, F denotes DFT of size N , and x(n) is as

in (1). The ambiguity function of a cyclostationary process
is a delta function (this is not generally true for stationary
processes); thus, if e(n) is cyclostationary, then (6) reduces
to a scaled version of the discrete bispectrum of the system
h(n) along slice (:; l). In that case, the complexity for the
bispectrum computation can be greatly reduced, since (6)
involves only second order operations on the data.

3. THEORETICAL JUSTIFICATION OF
IMPROVEMENT OF ESTIMATES BASED ON

\GOOD" SLICES

The asymptotic covariance matrix of the system estimates,
obtained via (3) is given by [5]:

�h � (eJHA
�1
B)�cx

3
(eJHA

�1
B)T ; (7)

where

(e)kn=
1

N
expfj

2�

N
kng; B = [IN�1

...� IN�1] (8)

JH=diag[H(1); . . . ;H(N � 1)]; (9)

A is the system matrix, and �cx
3
is the covariance matrix

of the (2N � 2)� 1 random vector cx3 de�ned as:

cx3 = [logCx
3 (�r � l; l); � � � ; logCx

3 (�N + 2� r � l; l);

logCx
3 (�r � l; l + r); � � � ; logCx

3 (�N + 2 � r � l; l + r)](10)

The covariance matrix �cx
3
is given by [5]

�cx
3
� D�Cx

3
D
T
; (11)

where

D = diag

�
1

Cx
3
(m1)

; . . . ;
1

Cx
3
(m2N�2)

�
; (12)

mi = (ki; li), i = 1; . . . ; 2N � 2, (k1...N�1 = kN ...2N�2 =
�r� l; . . . ;�N+2�r� l, l1...N�1 = l, lN ...2N�2 = l+r) are
pairs of discrete frequencies along slices l, l + r, and �Cx

3

is the covariance matrix of the bispectrum estimates along
these slices. The elements of �Cx

3

, as N !1, equal [8]:

cov[Ĉx
3 (f1; f2); Ĉ

x
3 (f3; f4)] =

1

NB2

N

[Cx
2 (f1)C

x
2 (f2)C

x
2 (f1 + f2)C

x
2 (f3)C

x
2 (f4)C

x
2 (f3 + f4)]

1=2

�fw1�(f2)�(f4)[1 + 2�(f1)][1 + 2�(f3)]

+w2�(f1 � f3)�(f2 � f4)[1 + �(f1 � f4) + 4�(f1)�(f2)]g(13)

where

w1 =

"
NX

u=�N

w(0; u)

#2
; w2 =

"
NX

u1=�N

NX
u2=�N

w
2(u1; u2)

#2
;

(14)
w(�1; �2) is a bispectral window [8], BN is the bispectrum
bandwidth, which for N ! 1 satis�es BN ! 0 and
B2

NN ! 1, and Cx
2 (fi) is the power spectrum of the pro-

cess x(n) evaluated at the discrete frequency fi.
Let us assume that the variance of the bispectrum esti-

mates does not vary signi�cantly from slice to slice (except
for the power spectrum slices and the diagonal slice). This



assumption is reasonable since, as shown by (13), the vari-
ance is inversely proportional to the record length. Then,
from (7), (11) and (12) it can be seen that the variance of
the system estimates will be inversely proportional to the
bispectrum values along the slices (:; l) and (:; l + r); thus,
usage of slices along which the bispectrum amplitude is low,
will result in large estimation variance, and the opposite.

This theoretical result justi�es the experimentally de-
rived slice selection criterion proposed in [6], which was
a measure of how \high" the bispectrum amplitude along
these slices is, and was referred to as the \frequency con-
tent", i.e.,

1

2�

Z �

��

j Cx
3 (!; l) j d!

This quantity is actually the average area under the speci�c
slice, and it quali�es as a measure of the bispectrum ampli-
tude along this slice. In the case of bandlimited systems,
there exist areas in the bispectrum where the amplitude
is very low, as compared with areas corresponding to the
passband of the system. Therefore, the frequency content
will vary signi�cantly along the slices of the bispectrum
of a bandlimited system. By using slices only with high
frequency content in the reconstruction procedure outlined
above, we are most likely to obtain better system estimates,
than by using the entire non-redundant bispectrum. The
validity and usefulness of the \frequency content" criterion
is demonstrated in the following section.

4. RESULTS

In this Section we compare the selected slices-based method
to the methods of [2] (BLW) and [7] (RG) for the recon-
struction of a bandlimited system. We focus on the case of
very short data records, where the HOS estimates should,
in theory, exhibit considerable variance. We show that, by
using selected slices of the output spectra, it is possible
to obtain satisfactory system estimates, even in that case.
Moreover, use of slices that do not satisfy the criterion of
goodness, leads to deterioration of performance, in terms of
mean-square-error.

Although the system considered was real, we used two
slices for the reconstruction procedure instead of one (see
Proposition 1), since an FFT size of N = 64, a power of
2, was used, to speed up computations. The reconstruction
procedure was repeated using several pairs of slices, and the
estimated systems were averaged in the time-domain.

We used a highpass system with transfer function

H(z) =
(1� [0:1� j0:8]z)(1� [0:9999� j0:0156]z�1)

(1 � 0:4z�1)�1(1� 0:3z�1)

and estimated an array of 8� 8 third-order cumulant lags.
In order to select the slices for better reconstruction, we

run 100 simulations and computed the frequency content of
each slice at each run. The average frequency content over
all runs is shown in Fig. 1 where the shaded area indicates
standard deviation. Slices 20-32 clearly exhibit a consis-
tently higher frequency content than all others.

Then we run 100 simulations of the selected slices-based
method, using averaging over slices 24-31, and the entire
bispectrum based methods BLW and RG. The results are

shown in Fig. 2 (a)-(c) and (d)-(f) for SNR of 1 and 10
dB respectively. It should be noted that only 64 symbols
were used for the bispectrum estimation. It can be seen
that both methods are outperformed by the proposed one.
This can be attributed to the fact that the actual system
h(n) is highpass, therefore its output bispectrum contains
regions of low magnitude. The inclusion of such regions in
the reconstruction procedure is responsible for poor perfor-
mance. On the other hand, selection of regions with higher
signal information only, as in the proposed method, leads
to better results.

A comparison of all methods in terms of mean-square-
error (MSE) was also conducted, and the results are shown
in Figs. 3 and 4, for SNR equal to 1 and 10 dB, respec-
tively, and record length varying from 64 to 2048 samples.
To illustrate the advantage of using only slices with high
frequency content for reconstruction, the proposed method
was implemented with averaging over slices 24-31 and also
over all possible slices, 0-32. As was expected from the pre-
vious results, the proposed method exhibits a signi�cantly
lower MSE than the BLW and RG methods. What is inter-
esting to note though, is that the use of certain \good" slices
only, as opposed to using the whole bispectrum, in the pro-
posed method, seems to produce results with lower MSE.
This di�erence in MSE decreases with decreasing SNR, and
increases with increasing record length.

It was stated previously that by using certain \good"
bispectrum slices only, instead of the whole bispectrum,
we could potentially reduce the system estimation variance
without resorting to longer observations. This becomes ev-
ident by a closer examination of the results in Figs. 3 and
4. For example, in Fig. 3, if using the whole bispectrum
we would have to use 512 data samples to achieve the same
MSE that we could achieve with 64 samples if using slices
24-31 only; the same result holds for 1024 and 128 samples
for the whole bispectrum and slices 24-31 respectively. At
SNR=10 dB (Fig. 4), we would need 1024 (or 2048) samples
with the whole bispectrum to get the same performance as
with 256 (or 512) samples when using slices 24-31. The
savings in computation time and complexity are obvious.
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Figure 1: Frequency content for slices 0-32 of the output
bispectrum of the system. Circles and solid line represent
the average over 100 simulations, while shaded area indi-
cates sample standard deviation.
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Figure 2: Comparison of the selected slices-based, BLW
and RG methods for 64 output samples, and SNR=1 dB,
((a)-(c)) and 10 dB ((d)-(f)). Actual system is in solid
lines, the average over 100 estimates in dash-dotted lines,
and shaded area indicates standard deviation.
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Figure 3: Comparison of the selected slices-based (av-
eraging over slices 24-31 and over all slices), BLW
and RG methods for 64-2048 output samples and SNR=1
dB.
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Figure 4: Comparison of the selected slices-based (av-
eraging over slices 24-31 and over all slices), BLW
and RGmethods for 64-2048 output samples and SNR=10
dB.
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