
QUANTIZATION OF CEPSTRAL PARAMETERS FOR
SPEECH RECOGNITION OVER THE WORLD WIDE WEB

V. Digalakis1,2, L. Neumeyer2 and M. Perakakis1

(1) Dept. of Electronics and Computer Engineering
Technical University of Crete

Hania, 73100, GREECE

(2) SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025, USA

ABSTRACT
We examine alternative architectures for a client-server model of
speech-enabled applications over the World Wide Web. We
compare a server-only processing model, where the client
encodes and transmits the speech signal to the server, to a model
where the recognition front end, implemented as a Java applet,
runs locally at the client and encodes and transmits the cepstral
coefficients to the recognition server over the Internet. We follow
a novel encoding paradigm, trying to maximize recognition
performance instead of perceptual reproduction, and we find that
by transmitting the cepstral coefficients we can achieve
significantly higher recognition performance at a fraction of the
bit rate required when encoding the speech signal directly.

1. INTRODUCTION

Motivated by the explosive growth of the Internet, speech
researchers have been working on the integration of speech
technologies into the World Wide Web (WWW) [1-5].
Applications include Internet telephony, speech-enabled
browsers, speech and natural language understanding systems,
and speaker verification. Developers have succesfully adapted
existing systems, or created new ones, that can be deployed over
the WWW.

In this paper we consider a client-server speech recognition
system. We assume that communication channels between the
client and the server may have limited bandwidth. That would
be a realistic assumption in applications that communicate over
the Internet or through wireless channels. The architecture is
shown in Figure 1. A central server provides speech recognition
services. The clients are deployed on heterogeneous
environments, such as personal computers, smart devices, and
mobile devices. Speech is captured by the clients, and after some
local processing, the information is sent to the server. The server
recognizes the speech according to an application framework
and sends the result string or action back to the client.

Esentially, this system uses two major speech technologies:
speech recognition and speech coding. In a complex dialog
system, coding would be required to present audio prompts to
the user. Standard coding techniques can be used to send the
speech over low-bandwidth channels and produce perceptually
acceptable speech to the user. In this paper, however, we focus
on the opposite path, that is, the speech data sent from the client
to the server.

Traditional speech coding research focuses on the performance
trade-off between transmission rates and perceptual
reproduction quality. To achieve this goal, several succesful

techniques have been developed, resulting in dramatic
technological advances. The data compression problem for
state-of-the-art hidden Markov model (HMM) based speech
recognition systems differs from the traditional speech coding
problem in that the optimization criterion is recognition
accuracy instead of perceptual quality of the reproduced data. In
addition to the practical goal of developing a client-server
architecture, we also have an interest in understanding how
much and what information is actually being modeled by the
HMMs. Understanding what data is redundant in the
representation of the speech signal may open the door to new
ideas on how to better model it.

Figure 1 Client-server speech recognition system.

The remainder of this paper is organized as follows. In Section 2
we review alternative architectures for the implementation of
speech-enabled applications over the WWW. In Section 3 we
discuss the coding of the front-end feature vectors at the client
side. In Section 4 we present our experimental results, and we
summarize and conclude in Section 5.

2. SYSTEM ARCHITECTURES

There are several alternative architectures for applications
incorporating speech recognition technology on the WWW, three
of which are examined here. The first strategy is to not do any
processing related to the recognition/understanding process at the
client side, and simply transmit the user’s voice to the server. The
second alternative is to do most of the speech recognition
processing at the client side, and then transmit the result to the
server. Finally, an intermediate solution is to do only the front-
end processing at the client and transmit only the information
that the recognizer needs through the network.

Narrow-Band
Channel

Audio
Speech
Recognition
Server

Database

Client 1

Audio
Client N

2.1 Server-only Processing

When all the recognition processing takes place at the server
side, we have the smallest computational and memory
requirements on the type of client machines that can access the
speech-enabled application. Speech can be transmitted to the
server either through the Internet, by using some traditional
speech coding techniques, or via a second channel, such as the
telephone. An example of the Internet-based transmission is the
approach followed by DEC, using a voice plug-in [1]. The
disadvantage of this approach is that the user cannot access these
applications through low-bandwidth connections, since, as we
shall see in Section 3, recognition performance degrades for rates
below 32 Kbps (kilobits per second). In low-bandwidth
connections, voice can be transmitted to the server by a telephone
line. This approach also degrades performance, since, in general,
recognition performance is lower in toll-quality than in high-
quality data. It is also inconvenient (the user is typically
prompted by the application to dial a telephone number, which in
the case of modem-based connections may not exist), and adds
the cost of the telephone connection to the user. It was, however,
followed by early applications [2, 3]. This approach was
attractive in the beginning because it overcame problems
associated with audio capture and transmission standards.

2.2 Client-only Processing

A different strategy is to run the recognition and understanding
engines at the client machine. The obvious advantages are that a
high-bandwidth connection is not required, and that recognition
can be based on high-quality speech, since the sampling and
feature extraction takes place at the client side. The system is
also less dependent on the transmission channel and therefore
more reliable. This approach, however, limits significantly the
types of clients that the speech-enabled application can support,
since they must be powerful enough to perform the heavy
computation that takes place in the recognition process. In
addition, local processing may not be desirable for certain types
of applications, like speaker verification [5]. Applications based
on dynamic and complex grammars that require rapid database
access are also not good candidates for a client-only architecture.

2.3 Client-Server Processing

This approach is based on two key observations:

• The feature extraction is only a small part of the
computation that takes place in a speech recognition and
understanding application.

• Speech recognition needs only a small part of the
information that the speech signal carries.

The first observation implies that we can run the front-end
processing (the feature extraction) at the client side on a much
wider range of machines than the ones that will support the
whole recognition process. There are additional advantages of
client-server processing over the client-only model. The
recognizer may need information that exists on the server side in
order to guide the decoding process; this information would have
to be transmitted to the client in the client-only model, something
unnecessary in the client-server model since the decoding takes
place at the server side. To make speech recognition servers
available from a variety of systems, front-end processing and

compression can be standardized. Standard front-end modules
can be installed on the client machines as a system resource, a
Java applet, or a browser plug-in.

Our second observation clearly shows the advantage of client-
server processing over the server-only model. Traditional speech
coding focuses on the perceptual reproduction quality of the
coded speech. As a result, the speech coder may transmit
redundant information, and at the same time introduce noise to
the features that are important in the recognition process because
of bandwidth limitations. When the objective is to transmit the
speech to a recognition server, there is a clear shift in the speech
coding paradigm, and the objective of the coding process should
be recognition accuracy. If the information used by the
recognition process is contained in a set of features, then only
this set of features needs to be compressed and transmitted to the
server. For example, typical state-of-the-art speech recognizers
represent the vocal tract information using a set of the first few
cepstral coefficients. In view of our objective, we should expect a
significant reduction in bit rate if we encode this set of cepstral
features, as opposed to encoding the speech signal itself.

3. CODING OF CEPSTRAL
FEATURES

In the server-only model, toll-quality speech can be coded and
transmitted to the server by using standard speech coding
techniques, like ADPCM at 32 Kbps, or newer schemes that are
used today in mobile telephony, like GSM or CELP at bit rates of
13 Kbps or below. In Section 4, however, we show that in
addition to the recognition performance degradation that one
encounters when using toll quality instead of high-quality speech,
we have an additional drop in performance when hybrid coding
schemes like GSM or CELP are used at low bit rates.

In contrast, for the client-server approach, we only need to
transmit the set of coefficients that will be used in recognition.
Mel frequency-warped cepstral coefficients (MFCCs), are a
common set of features used by many state-of-the-art HMM-
based speech recognizers. Typical choices for the dimension of
the feature vector and the rate at which it is computed are 13 and
100 times per second, respectively [6]. Secondary features, like
the first- and second-order derivatives of this feature vector that
are also used in recognition, do not have to be coded and
transmitted, since this information can be obtained at the server
side. Hence, one needs only to quantize a total of 1300
parameters per second of speech.

Discrete-density HMMs also quantize the front-end features and
then model directly the quantized features, using discrete
densities. A common choice is to use six features - namely, the
energy, the vector of cepstral coefficients, as well as their first-
and second-order derivatives - and quantize them by using
separate vector-quantization (VQ) codebooks. In a typical
discrete-density HMM [6], 256-dimensional codebooks are used
for the cepstral coefficients and their derivatives, and 32-
dimensional codebooks are used for the three energy features. If
a discrete HMM approach is adopted for our client-server model,
the required bit rate would be (3x8+3x5)x100 bps = 3.9 Kbps.
Although this rate is significantly lower than the rate required to
code the speech signal directly, it comes at a significant price in
recognition accuracy: a one-and-a-half- to two-fold increase in

word-error rate has been reported for discrete-density HMMs
when compared to their continuous-density counterparts.

The degradation in accuracy of the discrete-density HMMs can
be attributed to the low resolution with which the space of
observation features (the acoustic space) is represented. If we
look at the subspace of cepstral coefficients, a typical discrete-
density HMM uses a VQ codebook with 256 bins to represent a
12-dimensional space. Increasing the codebook size is not a
feasible solution, since it complicates significantly both the client
and server processes. The computation and memory requirements
of the vector quantizer, which in our case will run at the client,
will be proportional either to the number of bins, if a linear
vector quantizer is used, or to their logarithm (i.e., the number of
bits), when a tree-structured vector quantizer is employed. Most
significant, however, is the cost at the server side. The number of
parameters for a discrete-density HMM is proportional to the
number of bins in the quantizer. For medium to large vocabulary
applications, there are millions of parameters in discrete-density
HMMs, and hence increasing the codebook size is not a feasible
solution.

A standard technique for managing a large compression task is to
decompose it into smaller sub-tasks [7]. To improve the
resolution with which the acoustic space is represented, without
the significant costs incurred when increasing the vector
codebook size in discrete HMMs, we can employ scalar, or
subspace quantization of the cepstral coefficients. Hence, we
partition the cepstral vector into subvectors, and then encode the
subvectors by using separate codebooks. In the extreme case, the
subvectors consist of single cepstral coefficients. The total
number of bins that represent the acoustic space is the product of
the number of bins used for the representation of each subvector.
To avoid the increase in the number of discrete-HMM
parameters, we have chosen to model speech using continuous-
density HMMs at the server. The subvectors are encoded at the
client side, transmitted through the network, and then mapped to
their centroids at the server. These centroids are then the input to
the recognition process. To summarize, employing scalar, or
subspace quantization of the cepstral coefficients has the
following benefits:

• The acoustic space may be represented with a high-
resolution, keeping the computational and memory
requirements of the quantizer at the client side at a low
cost.

• The centroids of the product-code can be used as input
to a continuous-density HMM maintaining high
recognition accuracy.

• There is no need to transmit secondary features, like the
first- and second-order derivatives, maintaining the
required bit rate at low levels.

4. EXPERIMENTS

To experiment with the quantization of cepstral parameters for
speech recognition over the WWW, we have selected the ATIS
domain. This is the domain of the first speech-enabled
application over the WWW developed at SRI International [2].
In addition, there are available for the ATIS domain both high-
quality and toll-quality data, which allows us to compare the
server-only architecture, which uses toll-quality speech, with the
client-server model which can use high-quality data.

4.1 Baseline and Server-only Performances

The recognizer used throughout our experiments is SRI’s
DECIPHER phonetically tied-mixture speech-recognition system
[6]. The signal processing consists of a filterbank-based front end
that generated six feature streams: the cepstrum, the cepstral
energy, and their first- and second-order derivatives. Eight
cepstral coefficients were used for telephone-quality speech,
whereas for high-quality data we increased this number to
twelve. A bigram language model was used throughout our
experiments. The performance of the baseline recognizer high-
quality speech was evaluated at 6.55% word-error rate (WER).
Although not directly comparable, since it was evaluated on a
different set of speakers than the high-quality baseline, the
performance on telephone quality speech is significantly lower,
measured at 12.7% WER. Compared to the telephone-quality
baseline, the recognition performance did not degrade when the
data was encoded using the G721 32-Kbps ADPCM coding
standard. However, when speech was encoded with the full-rate
RPE-LTP GSM 13-Kbps speech encoder used in cellular
telephony, the WER increased to 14.5%. These results,
summarized in Table 1, indicate the recognition performance of
the server-only model for bit rates ranging between 13 and 64
Kbps.

4.2 Client-server Performance

We first quantized the cepstral coefficients of telephone-quality
speech by using scalar quantization, and evaluated the
recognition performance for various numbers of bits per
coefficient. We investigated both uniform and nonuniform
quantization. In the nonuniform quantization scheme, we used

the empirical distribution function as an optimal companding
function [7], since the random variable Y=FX(X) obeys a uniform
distribution. The empirical distribution was estimated by using
800 utterances from different speakers. These results are
summarized in Table 2.

We can see that the recognition performance is essentially flat for
4 to 8 bits per cepstral coefficient, and starts to degrade for lower
numbers of quantization levels. Although we use a very simple
quantization scheme, the WER of 13.2% at 3.6 Kbps is
significantly better than the GSM performance, although the
latter used a four-times higher bit rate. In addition, we see that
the nonuniform quantization outperforms the uniform
quantization significantly, especially at low numbers of bits per
cepstral coefficient.

Condition Bit Rate (Kbps) Word-error Rate (%)

M-law 64 12.7

GSM encoding 13 14.5

Table 1: Bit rates and word-error rates for different
speech encoding schemes in the server-only
processing model.

A significant advantage of running the front end at the client
side, however, is that we can use the high-quality front end that
uses a higher sampling rate and a larger number of bits per
waveform sample. The baseline performance for the high-quality
front end is 6.55% WER. Although the bit rates are slightly
increased when compared to the telephone-quality front end,
because of the larger number of cepstral coefficients used, we
can see that the recognition performance is significantly better in
comparable bit rates. For example, transmission of the high-
quality cepstral coefficients at 3.9 Kbps yields a WER of 6.88%,
whereas transmission of the toll-quality coefficients at 3.6 Kbps
resulted in a 13.19% WER. When compared to the server-only
processing model using GSM encoding, the performance
improvement is even bigger: we get less than half the error rate
(6.88% vs. 14.5%) at less than a third bits per second (3.9 Kbps
vs. 13Kbps).

We have plotted, in Figure 2, speech recognition performance as
a function of the bit rate for the three cases we examined: direct
encoding of the speech signal, transmission of the cepstral
coefficients of a telephone-quality front end, and transmission of
the cepstral coefficients of a high-quality front end. We can see
that, at any bit rate, the best strategy is to encode the high-quality
cepstral coefficients. Further coding efficiency was obtained by

using variable number of bits per coefficients. For example, by
using 3 bits for cepstral coefficients 0-3 and 2 bits for
coefficients 4-12 the error rate was 6.55% at 3 kbps.

0

5

10

15

20

25

0 5 10 15

Bit Rate (kbps)

W
o

rd
 E

rr
o

r
ra

te
 (

%
)

toll-quality
MFCC
encoding

high-quality
MFCC
encoding

speech
encoding
(GSM)

Figure 2: Recognition performance as a function of the
bit rate for coefficient and waveform coding.

5. CONCLUSIONS
We investigated different strategies for encoding and transmitting
speech in speech-enabled applications on the WWW. We found
that nonuniform scalar quantization of MFCCs obtained using a
high-quality front end had a much lower error rate than encoding
the speech signal directly, at a fraction of the bit rate required for
GSM encoding. The required bit rate to achieve the performance
of a recognizer running locally with a high-quality front end was
found to be less than 4 Kbps.

6. ACKNOWLEDGMENTS
This work was accomplished under a contract to Telia Research
of Sweden and by internal SRI research and development funds.

7. REFERENCES
[1] D. Goddeau, W. Goldenthal and C. Weikart, “Deploying

Speech Applications over the Web,” Proceedings
Eurospeech, pp. 685-688, Rhodes, Greece, September 1997.

[2] L. Julia, A. Cheyer, L. Neumeyer, J. Dowding and M.
Charafeddine,
“http://www.speech.sri.com/demos/atis.html,” Proceedings
AAAI'97, Stanford, CA, March 1997.

[3] E. Hurley, J. Polifroni and J. Glass, “Telephone Data
Collection Using the World Wide Web,” Proceedings
ICSLP, pp. 1898-1901, Philadelphia, PA, October 1996.

[4] S. Bayer, "Embedding Speech in Web Interfaces,"
Proceedings ICSLP, pp. 1684-1687, Philadelphia, PA,
October 1996.

[5] M. Sokolov, “Speaker Verification on the World Wide
Web,” Proceedings Eurospeech, pp. 847-850, Rhodes,
Greece, September 1997.

[6] V. Digalakis and H. Murveit, “Genones: Optimizing the
Degree of Mixture Tying in a Large Vocabulary Hidden
Markov Model Based Speech Recognizer,” IEEE Trans.
Speech Audio Processing, pp. , July 1996.

[7] A. Gersho and R. M. Gray, “Vector Quantization and Signal
Compression,” Kluwer Academic Publishers, 1991.

Word-error Rate (%)

Bits/Coef. Bit Rate (Kbps) Uniform Nonuniform

8 7.2 12.55 12.82

7 6.3 12.65 12.87

6 5.4 13.08 12.65

5 4.5 13.14 13.62

4 3.6 17.43 13.19

3 2.7 45.47 14.64

2 1.8 108.9 21.07

Table 2: Bit rates and word-error rates for scalar
quantization of cepstral coefficients in telephone-
quality speech.

Word-error Rate (%)

Bits/Coef. Bit Rate (Kbps) Uniform Nonuniform

8 10.4 6.65 6.53

7 9.1 6.76 6.40

6 7.8 6.65 6.43

5 6.5 6.96 6.32

4 5.2 6.96 6.32

3 3.9 12.45 6.88

2 2.6 95.43 9.04

Table 3: Bit rates and word-error rates for scalar
quantization of cepstral coefficients in high-quality
speech.

