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ABSTRACT

In low power VLSI design, fixed point number representations
are standard. For some signal processing applications, however,
achieving sufficient dynamic range with fixed point may lead to
computations utilizing more precision than necessary. In such
cases, trading precision for dynamic range through the use of float-
ing point and logarithmic number system representations can po-
tentially provide power savings. This is demonstrated for a sub-
band speech coding application using architectural-level capaci-
tance modeling.

1. INTRODUCTION

The chief concerns in the design of VLSI signal processors have
traditionally been speed and layout area. More recently, the issue
of circuit power dissipation has become prominent. This has been
largely motivated by the emergence of portable computing and
digitally-based communications devices, where conserving energy
is important because of battery limitations. In non-portable com-
puting environments, power dissipation is also an issue, since tem-
perature affects packaging costs and circuit reliability [1]. Con-
versely, as effective chip areas have increased due to improved
manufacturing and reduced feature sizes, area is somewhat less of
a constraint than before; indeed, area is often sacrificed to reduce
power [2].

Fixed point arithmetic is the norm for low power applications.
However, fixed point representations may have to provide more
precision than is needed for a particular application, simply to
handle the dynamic range of the data encountered. For exam-
ple, in lossy speech and image coding, output precision is reduced
through quantization. This paper examines floating point and log-
arithmic representations, which both support wide dynamic ranges
and have similar numeric properties, as low power alternatives to
fixed point. Architecture-level power analysis of a speech com-
pression application using subband coding is employed to study
tradeoffs between various number representations and precisions.

2. POWER ESTIMATION

In well-designed CMOS circuits, the main source of power dissi-
pation is the charging and discharging of node capacitances. In
exploring the tradeoffs between alternative implementations of a
processing module, an appropriate measure for comparison is the

power dissipated over the duration of the access. This gives the
energy per access,

Em = CmV
2
dd: (1)

whereCm is theswitched capacitance, andVdd is the supply volt-
age [3]. The switched capacitance describes the average capac-
itance charged per access. Energy usage can be minimized by
a combination of reducingVdd (affecting circuit delay) andCm.
Reducing switched capacitance will be addressed here.

Generally the first step in assessing the tradeoffs among var-
ious approaches is an architectural level estimation, which is less
accurate than transistor or gate level estimates, but is orders of
magnitude less costly. At the architectural level, general formulas
for the capacitances of building blocks such as adders and regis-
ters, parameterized by fundamental quantities such as word length,
are used. The average switched capacitance for a complex oper-
ation can then be obtained by summing capacitances over all the
component modules, weighted by activity factors describing the
fraction of the time that a particular component is accessed [4]. Ca-
pacitance models for arithmetic operation under various numeric
representations will now be discussed.

2.1. Fixed Point Arithmetic

Many past and present DSP systems rely on fixed-point arithmetic.
Signal processing inputs are typically fixed point, and fixed-point
hardware is well-understood, and relatively simple. In the multiply-
accumulate operations which dominate signal processing, the bulk
of the power is dissipated in the multiplier. For ann1 � n2-bit
multiply, the switched capacitance is modeled as

C
(Fix)
mult (n1; n2) = c�n1n2; (2)

and the capacitance of ann-bit add is

C
(Fix)
add (n) = ca1n+ ca2; (3)

wherec�, ca1, andca2 are model constants [2][4].
Much research is being devoted to reducing the power dissi-

pation of various fixed-point units; one approach to energy saving
related to number representation is to reduce word sizes by trun-
cating least significant bits [6].



2.2. Floating Point

Floating point number representations enjoy widespread use in sci-
entific computing and signal processing because they simplify pro-
gramming and provide wider dynamic range than fixed point for
the same number of bits. Floating-point has not found favor in
low power applications due to its perceived complexity and over-
head [7]. A floating-point multiply consists of a fixed-point mul-
tiplication of the mantissas, and a fixed-point add of exponents
(followed by a subtraction if excess notion is used). For a float-
ing point representation with ak-bit excess-notation exponent and
l-bit mantissa, the capacitance can be modeled as

C
(Flt)
mult (k; l) = C

(Fix)
mult (l) + 2C

(Fix)
add (k): (4)

A float addition is composed of: a prenormalization step (subtract-
ing exponents and shifting one mantissa); an addition of mantissas
(possibly extended precision); and a postnormalization (shifting
the sum, and adjusting the exponent); thus, the capacitance of a
double precision accumulate can be modeled as

C
(Flt)
add (k; l) = C

(Fix)
add (2l) + 2C

(Fix)
add (k) + 2Cshift(2l):(5)

To first order, the switched capacitance of ann-bit shifter is given
by

Cshift(n) = cs1n+ cs2 log(n+ 1); (6)

assuming that the maximum allowed shift isn.
Depending upon the application, floating point may have some

low power advantages. The underlying mechanism is that reduc-
ing the precision by a factor ofa leads to a reduction in multiplica-
tive power dissipation by a factor ofa2. The practical question is
whether or not this savings offsets the added complexity of other
floating-point operations. For the matrix-vector multiplies occur-
ing in graphics projection transformations, floating point has been
shown to dissipate less power than fixed point [7].

2.3. Logarithmic Number System

The Logarithmic Number System (LNS) can be interpreted as an
“extreme” form of floating point. In LNS, a numberX is rep-
resented by its sign,sX , and the logarithm to the base� of its
absolute value:

LX = log� jXj: (7)

Generally the base used is 2, and then-bit fixed-point value is
treated as consisting of ak-bit integer part and anl-bit fraction
with n = k+ l. The numeric properties of LNS and floating point
are similar. The logarithmic system encodes2l values in the in-
terval [2d; 2d+1), with distances which are harmonically related

by the factor21=2
l

, while a floating-point scheme with anl-bit
mantissa plus hidden bit would divide the same interval into2l

equal-sized pieces. LNS provides similar dynamic range to float-
ing point, and statistical analyses show that it can be slightly more
accurate than single precision floating point [8]. However, unlike
LNS, floating point allows the possibility of double precision ac-
cumulation of sums.

The chief attraction of LNS arithmetic is that the product of
two numbersA andB is computed by the fixed-point addition of
their logarithmic representations:

sAB = sA � sB (8)

LAB = LA + LB : (9)

Consequently, the switched capacitance is

C
(LNS)
mult (k; l) = C

(Fix)
add (k + l): (10)

(The log can also be coded in excess notation as is commonly done
with floating-point exponents but the overhead is higher since the
full word add is required to restore the offset – clearly a draw-
back in the context of low power processing.) LNS multiplication
clearly has major advantages over conventional fixed- and floating-
point representations in regard to both speed and switched capaci-
tance; a 5:1 power-delay advantage over floating point is reported
for one particular implementaion [9].

Logarithmic addition and subtraction are more complicated;
they are based on the identities

A�B = A(1�B=A): (11)

In logarithmic form,

LA�B = LA + U�(LB � LA) (12)

where

U�(LX) = log2(1 � 2LX ) (13)

Without loss of generality (at the cost of a compare), it can be
assumed thatLA � LB , so thatU+ andU� are defined only for
negative arguments.

The functionsU+ andU� are typically implemented using
table lookup, and represent a major impediment to widespread
adoption of LNS. Table sizes grow exponentially with precision,
and much LNS research activity is devoted to table compression
in order to allow increased word lengths [10][11][12]. One char-
acteristic that can be exploited is that the two functions decrease in
magnitude asLX decreases. Typically, the domain is divided into
small intervals, each with its own ROM whose wordlength is no
wider than necessary to encode the function for that interval. This
fits in well with low power considerations; not only is ROM width
reduced, but so is the number of active lines [4][13]. A reasonable
model for memory access (ROM, register file, etc.) capacitance is
given by [2][4]

Cmem(N; b) = cm1 + cm2N + cm3b+ cm4Nb; (14)

whereN is the number of entries in the memory bank andb is the
width in bits.

Handling fractional parts of more than about thirteen bits re-
quires the use of linear interpolation. This adds further overhead
to LNS addition/subtraction, although it has been shown that the
required multiplication can also be done logarithmically [10]. For
the application to be considered next, it will be seen that large
fractions are not required, and so LNS addition capacitance can be
modeled without interpolation as

C
(LNS)
add (k; l) = 3C

(Fix)
add (k + l) +

X

j

pjC
[j]
mem(Nj ; bj); (15)

wherepj represents the probability that thejth ROM block is ac-
cessed.



3. SUBBAND CODING EXAMPLE

The tradeoffs between the above number representations were ex-
plored in the context of a speech coding application. Fourteen-bit
speech data sampled at 14.7 kHz was input to the 24-tap quadra-
ture mirror filter (QMF) pair from the G.728 recommendation [14].
Computationally, this is two-output-channel FIR filtering domi-
nated by multiply-accumulate operations. Identical structures were
implemented in fixed point, floating point, and LNS representa-
tions, at a variety of precisions. Two issues were addressed: the
switched capacitance of each implementation; and the reconstruc-
tion distortion. The tradeoff between these two quantities is im-
portant, because some degree of degradation may be tolerated if
enough power is saved.

3.1. Capacitance

The coefficients for the capacitance models are based on [2], and
are shown in Table 1. Several comments are in order. First, this
model is employed only to obtain relative capacitances for com-
parison purposes; different technology processes will give differ-
ent values. Applying various low power design optimizations will
have an effect; however, just as power can be reduced for fixed-
and floating- point multiplies [5], ROM power can be reduced as
well [13]. Second, the coefficients are based on random inputs,
and may not accurately reflect switched capacitance for correlated
inputs, since bit positions with little activity can effectively shorten
the input words lengths [4]. This is most critical in the case of the
multiplies, where capacitance varies as the square. In a QMF-pair,
the ith high-band coefficient is related to that of the low band via
hH [i] = (�1)ihL[i]. Thus, the most efficient data/coefficient ac-
cess pattern is to multiply and sum the even- and odd-numbered
coefficients separately, which tends to reduce the effect of sample-
to-sample correlations for each bit position, generating a more
“white” process. Figure 1 shows the0! 1 transition probabilities
of successive fixed-point multiplier inputs for each bit position.
Random activity corresponds to a value of 0.25. The higher-order
data bit positions have been whitened to a degree. The second mul-
tiplier input exhibits a worse than random switching activity in the
high-order bits, due to the sign pattern of the filter coefficients.

The effective ROM switched capacitance depends upon both
the ROM organization and the access frequency. It was assumed
that there is a separate ROM bank for each unit interval in the do-
mains ofU+ andU�. The problem under consideration involves
limited precision, so it was assumed that no linear interpolation
was required. Next, becausejdU+(x)=dxj � 1 for all x, and
jdU�(x)=dxj � 1 for x � �1, stored values can change only
by the value of thelsb between adjacent entries. Thus, it is suf-
ficient to tabulate only the even-numbered entries, and store one
additional bit per entry to indicate if the next (untabulated) odd-
numbered entry is different; this converts a ROM ofN b-bit en-
tries into a ROM of sizeN=2 � (b + 1) bits. Finally, it was also
assumed that ROM blocks larger than 128 entries would be split.
Access patterns were computed during the course of the simula-
tions.

Switched capacitances (in pF) for single multiply-accumulate
operations, showing their add and multiply components, are given
in Table 2, along with ROM sizes (in bits) for LNS. In thePreci-
sioncolumn, the floating point values indicate the mantissa length
plus a hidden bit; for LNS the indicated value is for the frac-
tional part only. A 5-bit exponent was used for floating point,

while the LNS logarithms had 5-bit integer parts. To perform
the reduced-precision fixed point processing, least significant bits
were removed (with rounding). Double precision accumulates were
used for fixed and floating point.

3.2. Reconstruction Distortion

To measure distortion, the following steps were performed. The
filter bank outputs were passed through 64-bit floating-point re-
construction filters. This also included speech data processed by a
64-bit floating-point version of the QMF bank to serve as a refer-
ence. The distortion of the reconstructed signals relative to the
reference was then measured. This serves to gauge the distor-
tion inherent in each representation/precision combination, prior
to compression. The Signal-to-Noise Ratio (SNR) was selected as
the distortion measure, since it is revealing of reconstruction errors
at low signal levels [15]. Next, the QMF outputs were quantized,
the low frequency band to 5 bits, and the upper frequency band to
3 bits, and then put through the reconstruction and compared.

Performances are shown in Table 3. Both average and peak
SNR are shown. Several observations can be made. Prior to quan-
tization, the 14-bit fixed point introduced the least distortion. Re-
duced precision floating point and LNS could not achieve the SNR
of the 14-bit fixed point. A 10+(1) bit floating-point mantissa and
LNS 10-bit fraction were required to yield average SNR values
within one dB of the SNR of the 14-bit integer version. Also ob-
serve that truncating the fixed-point arithmetic precision in an at-
tempt to reduce capacitance caused a severe degradation in SNR.

After quantization, the story is different. The quantization
noise masks the distortion caused by utilizing less precise arith-
metic. A 7+(1)-bit floating-point mantissa and 9-bit LNS fraction
yielded comparable performance to the 14-bit fixed-point version
at about half the capacitance. If an extra 0.4 dB of distortion is
acceptable, 5+(1)-bit float and 7-bit fraction LNS can be used, for
power savings in excess of a factor of three. Finally, note that in
spite of the close numeric correspondence between ak-bit frac-
tional logarithm and ak-bit mantissa, the floating point version
seemed to perform better for a given precision; recall that double
precision accumulates were used with floating point.

4. CONCLUSIONS

Fixed point arithmetic is the norm for low power applications, but
it may provide too much precision relative to the required dynamic
range for some signal processing tasks. In a speech coding appli-
cation, floating point and logarithmic number systems were com-
pared to fixed point with regard to both accuracy and switched
capacitance. For little or no increase in distortion, capacitance re-
duction factors of from two to three were achieved; in general,
the distortion caused by reduced precision was masked by the ef-
fects of the compression quantization. The floating point repre-
sentations generally required fewer bits than LNS to give the same
distortion.

Future work will address the issue ofVdd reduction and delay.
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