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ABSTRACT

An energy-constrained signal subspace (ECSS) method is
proposed for speech enhancement and recognition under an
additive colored noise condition. The key idea is to match
the short-time energy of the enhanced speech signal to the
unbiased estimate of the short-time energy of the clean
speech, which is proven very e�ective for improving the es-
timation of the noise-like, low-energy segments in speech
signal. The colored noise is modelled by an autoregres-
sive (AR) process. A modi�ed covariance method is used
to estimate the AR parameters of the colored noise and a
prewhitening �lter is constructed based on the estimated
parameters. The performance of the proposed algorithm
was evaluated using the TI46 digit database and the TIMIT
continuous speech database. It was found that the ECSS
method can signi�cantly improve the signal-to-noise ratio
(SNR) and word recognition accuracy (WRA) for isolated
digits and continuous speech under various SNR conditions.

1. INTRODUCTION

It is well known that when speech signals are degraded by
background noises, the performance of many voice commu-
nication and recognition systems become unacceptable. An
important problem is to enhance speech degraded by col-
ored noise which represent most acoustic ambient noise. In
this paper, we introduce an energy constrained signal sub-
space (ECSS) method to enhance the speech signal contam-
inated by additive colored noise. The enhanced speech is
passed into an existing speech recognition system which was
trained in a noise-free setting to evaluate the quality of the
enhanced speech signal. In this paper, the noisy signal is
modelled as:

x(m) = s(m) + n(m) (1)

where m is the discrete time index, s(m) is the clean speech
signal, x(m) is the noisy speech signal, and n(m) is the
additive noise.
The signal subspace principle was proposed by Ephraim

and Van Trees in 1995 [4]. The key idea is to decompose
the vector space of the noisy signal into a signal-plus-noise
subspace and a noise subspace under the assumption that
the additive noise is white. The enhancement is performed
by removing the noise subspace and estimating the clean
speech from the remaining signal-plus-noise subspace. How-
ever, we observed that the signal subspace (SS) method

didn't work well for the noise-like, low-energy speech units
in continuous speech such as consonants. In this work, we
introduce an energy constraint that uses the unbiased es-
timate of the short-time energy of clean speech to adjust
the speech enhanced by the SS method. It was found that
the energy-constrained signal subspace (ECSS) method is
very e�ective for recovering the low-energy segments in con-
tinuous speech. As a result, the recognition accuracy on
the enhanced speech was signi�cantly improved. Further-
more, the colored noise is modelled by an autoregressive
(AR) process. A modi�ed covariance method is used to
estimated the AR parameters of the colored noise process
and a prewhitening �lter is constructed based upon the es-
timated AR parameters. The noisy speech signal �ltered
by the prewhitening �lter is then enhanced by the ECSS
method and an inverse �lter is used in the post-processing
stage in order to remove the distortion to the speech signal
caused by the prewhitening �lter.

This paper is organized as follows. The design of the
prewhitening �lter is discussed in Section 2. Two energy-
constrained signal subspace (ECSS) algorithmss for the col-
ored noise case are proposed in Section 3. The experiment
results are presented in Section 4 and a conclusion is given
in Section 5.

2. PREWHITENING OF THE COLORED
NOISE

For colored noise, the assumption that the correlation ma-
trix of the noise being positive de�nite no longer holds. The
approach taken in this work is to use a prewhitening �lter
to whiten the noise before enhancing the noisy speech sig-
nal and use an inverse �lter after the signal subspace based
processing to remove the e�ect of prewhitening �lter on the
clean speech signal.

Suppose that the discrete time signal n(m) can be mod-
eled by an AR process of order p,

n(m) = �

pX
i=1

a(i)n(m� i) + v(m) (2)

where v(m) is a white Gaussian process with variance
�2v. The problem is to estimate the AR coe�cients
a(1); � � � ; a(p) and the white Gaussian noise variance �2v
given the colored noise observation data n(1); � � �n(L).
The resulted optimal AR coe�cients â1; � � � ; âp is given

by [5]:
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where:

cnn(j; k) =
1

2(L� p)
(

L�1X
m=p
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x(m+ j)x(m+ k))

0 � j � p; 0 � k � p (4)
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The prewhitening �lter h(m) and its inverse �lter h�1(m)
are constructed based on the estimated AR parameters:

h(m) =

�
â(m); if 0 � m � p;
0; otherwise

(6)

where â(0) = 1, and

h
�1(m) = �

pX
i=1

â(i)h(m� i) + �(m); m = 0; 1; � � � (7)

3. THE ECSS ALGORITHM FOR COLORED
NOISE

In the current work, two methods of using the energy con-
straint are proposed. For each frame t, the ECSS algorithms
are formulated in seven steps. The �rst method, referred
to as ECSS1 method, is based on the rescaling of the mag-
nitude of the estimated signal in step 6 (setting � = 1 in
step 5). The second one, referred to as ECSS2 method,
is based on the modi�cation of the transformation matrix
H(t) at step 5 where � in Eq. (17) is determined by a line
search to satisfy the energy constraint of Eq. (21) with step
6 being skipped. The criterion for the estimation of the di-
mension of the signal subspace in step 4 was �rst introduced
by Merhav in [6] and also used in [4].

Step 1 Prewhitening the colored noise.
Use the prewhitening �lter in Eq. (6) to �lter the noisy
speech signal.

Step 2 Estimate the correlation matrices for the noisy
and clean speech signal vectors.

r̂
(t)
xx(k) =

1

2TK

(t+T�1)K�kX
n=(t�T�1)K+1

x(n)x(n+k); 0 � k � K�1

(8)
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(9)

R̂s

(t)
= R̂x

(t)
� R̂n (10)

where R̂n is calculated using Eq. (8) and Eq. (9)
during a non-speech period.

Step 3 Perform eigen decomposition for the estimated
correlation matrices.

R̂x

(t)
= Ûx

(t)
�x

(t)(Ûx
(t)
)T (11)

R̂s

(t)
= Ûs

(t)
�s

(t)(Ûs
(t)
)T (12)

Step 4 Assuming that the eigenvalues of the estimated

correlation matrix R̂
(t)
s are �

(t)
s (1) � �

(t)
s (2) � � � � �

�
(t)
s (N), estimate the dimension of the signal subspace.

�M (t) = arg max
1�m�K

f�(t)s (m) > 0g (13)

�̂2n(m) =
1

K
kÛx2;K�mÛ

T
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(t)k2 (14)
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(15)

where �̂2n(m) represents the energy of the noisy signal
in the noise subspace assuming that its dimension is

K � m. U
(t)
x2;K�m is a K � (K � m) matrix of the

eigenvectors fu
(t)
x;m+1; � � � ; u

(t)
x;Kg of R

(t)
x .

Step 5 Compute the MMSE estimates.
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(t)
s1 )

T (19)

Ŝ
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where Û
(t)
s = [Û

(t)
s1 ; Û

(t)
s2 ] and Û

(t)
s1 is the principal

eigenvector matrix of R̂
(t)
s .

Step 6 Rescale the magnitude of the enhanced signal.

dkS(t)k2 = max(kX(t)k2 � �
2
n; 0) (21)

r = max(1;
dkS(t)k
kŜ(t)k

) (22)

~S(t) = rŜ(t) (23)



Step 7 Use inverse �lter to recover the clean speech sig-
nal.

Use the inverse �lter in Eq. (7) to �lter the enhanced
speech signal in Eq. (23).

4. EXPERIMENT RESULTS

The test materials in our experiment consist of two sets of
speech data: isolated digits and continuous speech. The
clean speech signals were degraded by computer generated
additive colored noise at di�erent SNR levels. The SNR of
the noisy signal is de�ned as:

SNR = 10 log10(

PL

k=1
s2(k)PL

k=1
(x(k)� s(k))2

) (24)

where L is the number of samples; x(k), s(k) are the kth

samples of the noisy and clean speech signals, respectively.

The proposed algorithms were tested in two ways. First,
the SNR improvement was evaluated to quantify the overall
quality of the enhanced speech signal. Second, the enhanced
speech signals were recognized by existing speech recogni-
tion systems. The WRAs on the enhanced speech from two
test data sets were evaluated and compared with those of
the noisy speech signals under di�erent SNR conditions.

4.1. Experiment on speech enhancement

4.1.1. Evaluation on isolated digits

In this experiment, we chose 10 isolated digits 0 through
9 from the TI46 database. Each digit was spoken by a
male and a female speaker and was repeated twice. So
there were totally 40 isolated digits in this test set. The
speech data rate was down-sampled to 8 kHz. The colored
noise was generated from an AR(2) model with parameters
a(1) = �0:45; a(2) = 0:55; �u = 1:0. The colored noise data
were added to the clean digits to generate the noisy digits
under SNR conditions of 0 dB, 5 dB, 10 dB and 20 dB.

Table 1 shows the SNR improvement for the isolated dig-
its under the condition of colored noise. It can be seen from
this table that the ECSS1 and ECSS2 methods can improve
the digit SNR from 2.2 dB to 7.6 dB for the colored noise
case. The SNR improvements for the input SNR conditions
of 0 dB, 5 dB, 10 dB and 20 dB are around 7 dB, 6 dB,
5 dB and 2 dB. This means that the lower the input SNR,
the higher the SNR improvement. We can also see from
Table 1 that the SNR improvement for the male speaker is
slightly higher than that for the female speaker.

Table 1. SNR improvement for isolated digits

Input SNR 0 dB 5 dB 10 dB 20 dB

ECSS1 method
Male speaker 7.6 dB 6.4 dB 5.2 dB 2.9 dB
Female speaker 7.5 dB 6.3 dB 5.1 dB 2.2 dB

ECSS2 method
Male speaker 7.0 dB 5.8 dB 4.8 dB 2.9 dB
Female speaker 6.9 dB 5.8 dB 4.7 dB 2.3 dB

4.1.2. Evaluation on continuous speech sentences

The test data set in this experiment consisted of 16 con-
tinuous speech sentences from the TIMIT database. The
colored noise was generated from the same AR(2) process as
described in previous section. The colored noise data were
added to the clean speech data to generate noisy speech
data under the SNR conditions of 5 dB, 10 dB and 20 dB.
Tables 2 shows the SNR improvement using the ECSS1

and ECSS2 methods in the case of colored noise. It can be
seen from this table that the ECSS methods can improve the
SNR by approximately 6 dB, 5 dB and 2 dB under the input
SNR conditions of 5 dB, 10 dB and 20 dB, respectively. It
seems that the SNR improvement by ECSS methods are
nearly the same for the isolate digits and continuous speech
sentences.

Table 2. SNR improvement for continuous speech
sentences

Input SNR 5 dB 10 dB 20 dB

ECSS1 Method 6.3 dB 4.8 dB 2.4 dB

ECSS2 Method 5.9 dB 4.5 dB 2.3 dB

4.2. Experiment on speech recognition

4.2.1. Evaluation on isolated digits

In this experiment, the digit utterances 0 through 9 spo-
ken by a male and a female speaker were used. Five ut-
terances of each digit were taken as training data and two
utterance of each digit were used as test data. The end-
points of both the training and test data were hand-labelled
by phone units. The analysis window size was 25 msec
and the window shift was 12.5 msec.The mel frequency
cepstral coe�cients (MFCC) of order 16 and their tempo-
ral regression coe�cients were used as the feature vector,
where the regression were made over �ve adjacent frames
(52.5 msec). The speech recognizer was a simple speaker-
dependent Viterbi decoder based on the acoustic models of
the digit-dependent phone units.
Table 3 shows the recognition accuracy of the noisy iso-

lated digits and the digits enhanced by the ECSS methods
under the SNR conditions of 0 dB, 5 dB 10 dB and 20 dB.
It can be seen from Table 3 that the ECSS methods yield
very high digit recognition accuracy for both male and fe-
male speakers under various input SNR conditions. The
recognition accuracy for the enhanced digits is 90% for the
male speaker and 95% for the female speaker under the in-
put SNR condition of 0 dB and 100% for both speakers
under the rest SNR conditions.

4.2.2. Evaluation on continuous speech sentences

In this part, the enhanced speech signals were recognized
by a HMM-based speaker-independent continuous speech
recognition (SICSR) system. The cepstrum coe�cients of
the PLP analysis (of order 8) and log energy were taken as
instantaneous features and their �rst-order 50 msec tempo-
ral regression coe�cients as dynamic features [3]. The task
vocabulary size was 853 and the grammar perplexity was
64. The input SNR conditions were 5 dB, 10 dB and 20
dB. The number of test sentences was 16 and the WRA for
the clean speech was 98.0%, where the WRA is de�ned by:



Table 3. Word recognition accuracy (WRA) for the
noisy digits enhanced by the ECSS methods

Input SNR 0 dB 5 dB 10 dB 20 dB

Baseline

Male speaker 40.0% 70.0% 90.0% 100.0%

Fmale speaker 75.0% 90.0% 95.0% 100.0%

ECSS1 method

Male speaker 90.0% 100.0% 100.0% 100.0%

Female speaker 95.0% 100.0% 100.0% 100.0%

ECSS2 method

Male speaker 90.0% 100.0% 100.0% 100.0%

Female speaker 95.0% 100.0% 100.0% 100.0%

WRA = (1�
] of Sub+ ] of Ins+ ] of Del

] of reference words
)

�100% (25)

where Sub means substitutions, Ins means insertions, Del
means deletions and ] denotes number.
The WRAs for the original noisy speech and the speech

enhanced by the ECSS methods are listed in Table 4.

Table 4. Word recognition accuracy (WRA) for
noisy continuous speech enhanced by the ECSS
methods

Input SNR 5 dB 10 dB 20 dB

Baseline -2.0% 33.3% 74.5%

WRA using ECSS1 method 53.9% 81.4% 93.1%

WRA using ECSS2 method 53.9% 80.4% 96.1%

It can be seen from Table 4 that the ECSS1 and ECSS2
methods improved the WRA by 55.9%, 47.1%{48.1% and
18.6%{21.6% under the SNR conditions of 5 dB, 10 dB and
20 dB. The WRA improvement by ECSS1 method is slightly
higher than improvement by ECSS2 method under the SNR
condition of 10 dB and the ECSS2 method perform slightly
better than the ECSS1 method under the SNR condition of
20 dB.

5. CONCLUSION

In this paper, an energy-constrained signal subspace
method is proposed for speech enhancement and recogni-
tion under colored noise conditions. The key idea is to
match the short-time energy of the enhanced speech sig-
nals to the estimated short-time energy of the clean speech.
The colored nosie was modelled by an AR process and a
modi�ed covariance method was used to estimate the AR
parameters. A prewhitening �lter and its inverse were con-
structed from the estimated AR parameters and were used
before and after the ECSS speech enhancement system for-
mulated for the white noise condition.
Both SNR and recognition accuracy improvements were

evaluated to verify the e�ectiveness of the proposed meth-
ods. It was observed that the ECSS methods provided SNR
gains around 6 dB, 5 dB and 2 dB for both isolated digits

and continuous speech sentences under the input SNR con-
ditions of 5 dB, 10 dB and 20 dB, respectively. The ECSS
methods also led to very high accuracy for isolated digit
recognition and provided signi�cant WRA improvements
for continuous speech under various input SNR conditions.
Future work will be focused on further WRA improvement
for continuous speech recognition under low SNR condi-
tions.
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