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ABSTRACT

The use of spectrally e�cient continuous phase modulati-
ons for mobile communications may lead to a serious perfor-
mance degradation of the classical frequency error detectors
(FEDs) due to the presence of self-noise. This contribution
presents a new statistically e�cient frequency estimation al-
gorithm for staggered modulations. The cancellation of the
self-noise is accomplished by the use of the Conditional ML
principle, well known in the context of array processing, as
an alternative to the Unconditional ML, typically applied in
the communications �eld. The paper also provides a new
Cramer Rao Bound (CRB) which is more accurate than
the so-called Modi�ed CRB (MCRB) extensively applied
to synchronization problems.

1. INTRODUCTION

A Frequency Error Detector (FED) is the basic component
of an automatic frequency loop. This kind of loop, either
in analog or digital form, is usually employed for the pur-
pose of carrier frequency synchronization in digital commu-
nications. Di�erent types of FEDs have been proposed in
the last few years, and basically, there may be classi�ed in
four types: quadricorrelators, dual-�lter detectors (DFD),
rotational detectors and ML-based detectors. The reader
is referred to the F.M. Gardner report [1] and references
therein, and to D'Andrea et al. papers [2][3] for a further
study of ML-based methods and the Cramer-Rao bounds
associated to this problem.

Frequency detectors based on the Maximum Likelihood
(ML) formulation are important in that they are expected
to provide good performance against noise. However, in
the case of digitally modulated signals, the assumption of
low signal-to-noise ratio (SNR) is usually required in or-
der to avoid the mathematical di�culties associated with
the rigorous application of the ML principle. To assume
that the SNR is low has the consequence that the �nal
structure of the estimator ignores the e�ect of the so-called
self-noise. It is demonstrated in [1] that self-noise-free ope-
ration can be achieved with non-staggered signals (when
the loop is in the steady state) provided that two mild res-
trictions are satis�ed, i.e., the link impulse response g(t)
is Nyquist (g(iT ) = 0, i 6= 0) and the Fourier Transform
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of the transmitted pulse has linear phase. However, in the
case of staggered signals, the more stringent requirement
that g(iT=2) = 0 at i 6= 0 should be met for the cancella-
tion of the self-noise, which is too restrictive for practical
applications.

This paper presents a new FED solution for the case of
staggered signals which has the property that the self-noise
is totally cancelled without the necessity of the above menti-
oned restrictive condition. The key point for the derivation
of the new solution is the use of a di�erent method for the
application of the ML principle, which does not require the
assumption of low SNR. In this sense, one of the goals of
the present contribution is to show that the conclusions de-
rived in the literature concerning the requirements for the
self-noise-free condition can not be considered as general
conclusions about the frequency estimation problem. Ins-
tead, it is the assumption of low-SNR required in the clas-
sical derivation what leads to these stringent requirements.
While in the �eld of array signal processing, both Condi-
tional ML (CML) and Unconditional ML (UML) methods
[4] have been studied and successfully applied to di�erent
problems, in the �eld of digital communications only the
UML method has been classically employed. A possible re-
ason for that is that most synchronization algorithms for
digitally modulated signals have been obtained by formula-
ting the problem in the continuous time domain, and their
discrete counterparts have been derived by a direct trans-
lation of them. Then, the question arises to whether the
CML method can be applied directly to the sampled digi-
tal modulations, and whether the obtained results will di�er
or not with respect to the classical ones derived from the
UML method. This question is addressed in the present
contribution where both classical and new algorithms are
derived via the CML principle by formulating the problem
directly in the discrete time domain.

The present contribution makes use of the high amount
of research e�ort on the CML in the �eld of array proces-
sing, by importing all those rich results to the frequency
estimation problem of digitally modulated signals. Speci�-
cally, on the one hand, the �nal structure of the FEDs is
based directly on the general equations for the gradient and
Hessian derived by Viberg et al. [5]. On the other hand,
the general expression for the Cramer-Rao Bound (CRB)
for the CML method derived in [4] is used to derive a more
accurate performance bound than the so-called Modi�ed
CRB (MCRB) derived in [3].



2. BACKGROUND

The derivation of the algorithm is done from the general
class of linear problems according to the following expres-
sion:

Y = Ap (�)X+W (1)

where the BxM matrix Y denotes the observation matrix
composed byM observation vectors y (i) (i = 0; 1; 2; :::;M�
1) of length B samples each, the NxB matrix X the trans-
mitted data symbols, the NxM modulation dependent sig-
nal model transfer matrix Ap (�), and the BxM noise ma-
trix W the AWGN term with scalar element by element
mean power �2w. The CML estimation of parameter vec-
tor � is obtained by the minimization of the following cost
function:
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where the observation data samples autocorrelation ma-

trix bR = YYH=M is projected into the orthogonal signal
space by mean of the orthogonal projection matrix P?A =
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ons, Stoica and Nehorai [4] derived the Cramer-Rao bound
(CRB) for the CML estimator in the context of linear array
theory. On the other hand, Viberg, Ottersten and Kailath
[5] derived the gradient and Hessian of the CML cost func-
tion (2). For the single parameter case (as happens in the
problem of frequency estimation) for which � = 
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where b� = XXH=M is the autocorrelation matrix obtained
from the symbol matrix X and matrix D (
) = @

@

Ap (
)

The following sections constitute a summary of the appro-
ach followed in [6].

3. FREQUENCY ESTIMATION FOR
NON-STAGGERED MODULATIONS

Let's consider the signal model for a non-staggered linear
digital modulation (e.g. MPSK, MQAM,...) a�ected by a
frequency error 
. The received signal in an AWGN channel
can be modeled by eq. (1). The received data vector signal
model of length B samples can be written as follows:

y = [y(0); y(1); :::; y(B � 1)]T = Ap (
)x+w (7)

where Ap (
) has the conventional convolution structure of
the pulse shaping �lter:
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being ap (
) the pulse shape response p of length 2K + 1
symbols sampled at Nss samples per symbol a�ected by the
frequency o�set a (
), that is:

ap (
) = p� a (
) (9)

p = [p(0); p(1); :::p((2K + 1)Nss � 1)]T (10)
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and being x = [x(0); x(1); :::; x(Ns � 1)]T the information
symbol vector which includes the carrier phase evolution
sampled at one sample per symbol:

x(n) = Aej(�+nNss
)s(n) (12)

The log-CML cost function (2) becomes:
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where Ep is the pulse energy. For ISI-free pulse shaping it
holds that AH

p (
)Ap(
) = EpI and the cost function to be
maximized becomes:

bSp(
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or, in other words, it is necessary to maximize in 
 the
mean power of the matched �lter ap (
) output decimated
at one sample per symbol which is more clearly represented
by the following expression:
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or, in other words, the periodogram over the synchronous

autocorrelation matrix bRsnc =
PNs�1

i=0
yiy

H
i of the strobe

by strobe partially overlapped received data yi, weighted by
the outer product of the matched �lter p response, with:

yi = [y(iNss); y(iNss + 1); :::; y(iNss + (2K + 1)Nss � 1)]
(17)

Finally, the solution update recursion given by eq. (4) is
derived from the gradient expression in eq. (5) and the
Hessian of the CML cost function in eq. (6). For a given
prior 
 close the CML solution, the gradient becomes:
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Figure 1: Structure of the FED. The obtained FED employing
the CML approach resembles that of classical Gardner's FED,
but with di�erent design of the two �lters.
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result agrees with that given by Gardner [1] where the es-
timation update is driven by the product of two FIR �lter
outputs, the matched �lter (MF) and the frequency matc-
hed �lter (FMF), as depicted in �gure 1. On the other
hand, the Hessian given in eq. (6 ) leads to:
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where PT = E
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for �p(k) =

jp(k)j2 =Ep . The asymptotic CRB (eq. (3)) for the fre-
quency estimation is given by:

CRBCML (
) =
1

2Ns SNR �p
(20)

which agrees with the MCRB given by Moeneclaey et al.
[7] and D'Andrea et al. [3].

4. EXTENSION FOR STAGGERED MODULATIONS

Staggered modulations (e.g. OQPSK, MSK,...) consist in
the modulation of two orthogonal subcarriers with a cons-
tant time-delay between them. There are two reasons for
using this modulation structure. The �rst one is to achieve
an almost continuous phase time evolution (in fact, MSK is
a particular case of CPFSK) and the second is to ensure a
more constant signal envelope time evolution for improving
the performance in front of non-linearities in the high power
ampli�ers.

The signal model given in eq. (7) for non-staggered mo-
dulations is also valid for the staggered modulations with
small changes. Basically, the unique di�erence is introduced
by the constant time-o�set between the orthogonal subcar-
riers. The most typical o�set is half a symbol period and
this is reected in the transfer matrix Ap (
) as follows:
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Note that the ISI-free condition obtained for non-staggered
modulations no longer holds (i.e.AH

p (
)Ap (
) 6= EpI).
The modi�cation of the transfer matrixAp (
) also requires

the extension of the symbol vector x to the modi�ed one
x = [x(0); x(1); :::; x(2Ns � 1)]T where now the length of
the vector becomes 2Ns instead of Ns, with even and odd
modi�ed symbols given by:

x(2n) = Aej(�+nNss
)Re [s(n)] (22)

x(2n+ 1) = Aej(�+(n+1=2)Nss
)jIm [s(n)] (23)

The new CML cost function is, once again, given by eq.
(14), but now, A]

p (
) 6= 1=EpA
H
p (
). Note that, since

a CML cost function is employed, the perfect suppression
of the pattern noise is ensured, because the term A]

p(
)y
extracts the minimum mean square error estimate of the
symbol information vector x, which is used to remove the
symbol information at the matched �lter output AH

p (
)y.
This property applies for the frequency estimation in both,
non-staggered and staggered modulations, and it is the fun-
damental di�erence with the UML based algorithms.

For the computation of the small error gradient let's
recall from eq. (5) that:
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It is useful to focus on the discussion of the �rst term A]
py.

The pseudo-inverse matrix is performing as a zero-forcing
matrix. For the asymptotic case B �! 1; the CML esti-
mation will become unbiased and the central rows of matrix
A]
p will only di�er in a time-delay. This property holds if

the transfer matrix Ap is full-rank or, in other words, if the
modulation has an excess of band larger than the required
by the sampling rate to ensure a non-zero discrete spectrum.
This condition applies for OQPSK, MSK, among many ot-
hers, but it could not be satis�ed for perfect band limited
modulations. Under this constraint, the computation of the
frequency error gradient is straightforward. If we de�ne the
pseudo-matched �lter P-MF as pasym and the frequency
pseudo-matched �lter P-FMF as b2; the gradient estimate
will follow the same structure as for the non-staggered mo-
dulations (eq.(18)), that is:
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where:
pasym = central row lim
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The estimation scheme is, once again, given by �gure 1.
Finally, the CRB is also derived and it follows the same
expression given for non-staggered modulation in eq. (20)
where parameter �p becomes �stagp is given:
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where
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5. SIMULATION RESULTS

This section illustrates the philosophy and performance of
the presented design procedure for the case of a MSK sig-
nal with Nss = 8 samples per symbol, which is interpreted



as a staggered signal with cosenoidal pulse shaping. Figure
2 shows the impulse response of the MF and FMF �lters.
This is the classical result obtained by applying the UML
method. It is seen that the output of these �lters to a single
pulse is not zero at some sampling instants di�erent from
the strobe, and this is the cause of the resulting self-noise
of the UML method. Figure 3 shows the same results as

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

MF

10 20 30 40

−0.5

0

0.5

FMF

10 20 30 40
0

0.2

0.4

0.6

0.8

1

MF Output

10 20 30 40
−1

−0.5

0

0.5

1
FMF Output

Figure 2: UML method. MF and FMF �lters for MSK along
with their response to a single symbol.

�gure 2 in the case of adopting the proposed CML design
procedure. It is seen that both P-MF and P-FMF �lters
have changed with respect to the MF and FMF pulses in
such a way that the output of these �lters to a single cose-
noidal pulse is now zero at the sampling instants, except for
the strobe. For that reason, the new solution does not ex-
hibit self-noise at the steady state. Finally, �gure 4 shows
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Figure 3: CML method. P-MF and P-FMF �lters for MSK
along with their response to a single symbol.

the variance of the frequency estimate normalized to the
e�ective observation time of the FED loop. It is seen that
for moderate to high energy per symbol to noise spectral
density (Es=No), the main source of performance degrada-
tion of the classical UML method is due to the presence
of self-noise. For that reason the good performance predic-
ted by the MCRB is never attained. On the contrary, the
CML estimator attains the more accurate CRB derived in
this paper. The only price for this improved behaviour is a
little degradation of the CML method with respect to the
UML method in the lower range of Es=No.
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Figure 4: Normalized steady state variance of the estimated
frequency for the UML and CML methods, along with the CRB
(CML) and the MCRB (UML).

6. CONCLUSIONS

The CML method is applied in this paper to a synchro-
nization problem, as an alternative to the classical UML
procedure typically applied in the �eld of digital communi-
cations. The main advantage of the new approach is that
the self-noise can be totally cancelled for those typical ca-
ses (e.g. staggered signals) for which the classical approach
leads to this undesirable e�ect. The new approach does not
require any statistical assumption about the symbols, and
the classical low-SNR assumption is not required as hap-
pened in the UML case. Therefore, it constitutes a better
founded way of applying the ML principle for deriving exis-
ting and new solutions. The future work will address the
extension of the method to the GMSK format, better suited
to mobile communications.
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