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ABSTRACT

A novel technique which characterizes the position and motion of
dominant spectral peaks in speech, significantly reduces the error-
rate of an HMM-based word-recognition system. The technique
includes approximate auditory filtering, temporal adaptation,
identification of local spectral peaks in each frame, grouping of
neighboring peaks into threads, estimation of frequency deriva-
tives, and slowly updating approximations of the threads and their
derivatives. This processing provides a frame-based speech repre-
sentation which is both dependent on perceptually salient aspects
of the frame’s immediate context, and well-suited to segmentally-
stationary statistical characterization. In noise, the representation
reduces the error-rate obtained with standard Mel-filter-based fea-
ture vectors by as much as a factor of 4, and provides improve-
ments over other common feature-vector manipulations.

1.  INTRODUCTION

The eigenfunctions of a resonating vocal tract are manifested
acoustically as formants in speech. The analysis of formants has
provided significant insights into speech production mechanisms,
and motivation for speech coding algorithms. Referring to auto-
matic speech recognition (ASR) in 1981, D. Klatt wrote [1]:

“These schemes will succeed only to the extent that metrics
can be found that are (1) sensitive to phonetically relevant
spectral differences such as those caused by formant
frequency changes, and (2) relatively insensitive to
phonetically irrelevant spectral differences associated with
a change of speaker identity or recording conditions.”

Although various compensation schemes for changing acoustic
environments are often used, the predominant characterization of
speech for statistical speech recognition is based on sequences of
short-time (10-20 ms) spectral estimations, which characterize the
coarse spectral envelope of each successive frame [2]. This repre-
sentation is only an implicit characterization of the formant struc-
ture of speech, and as such, does not provide direct access to the
phonetically relevant formant motion described above. Explicit
characterizations of speech dynamics typically focus on the
motion of the cepstral representation of the short-time spectral
estimates [3,4], and thereby parameterize changes in the ‘com-
plete’ spectral shape and not the specific (potentially robust) for-
mant motion.

More direct formant tracking typically involves first identifying
local spectral peaks in a sequence of spectral estimations [5,6].
Alternatively, Teager energy operators [7-10], Hilbert Transforms
and Wigner Distributions [11], as well as changes in the cross-
correlation of the temporal fine-structure between neighboring
auditory frequency channels [12] have been used to identify for-
mant frequencies in speech. Formant tracks are then pieced
together using heuristics [5,6], hidden Markov models [13], or the
minimization of a cost function [14]. The two-stage process has
also been collapsed to one using extended Kalman filters [15,16].
Unfortunately formant tracking systems are often non-robust;
they are only occasionally evaluated in noise, and are rarely tested
in the context of an ASR task.

Processing schemes which enhance the representation of spectral
dynamics and, more specifically, changing spectral peaks (e.g.
[17,20]) have been proposed. While such sensitivity may be pho-
netically relevant, the characterization of the formant motion is
usually implicit. Formant motion is only weakly characterized by
the temporal derivative of the overall spectral estimate, and by the
sequence of underlying states in the statistical model. Neither of
these is a direct characterization, and neither provides an obvious
means to exploit the dominant frame-to-frame correlations of
local spectral peaks. Finally, context dependent spectral represen-
tations may, in general, be poor matches to ASR algorithms which
rely on the characterization of segmentally stationary statistics. A
more direct parameterization of the motion of spectral peaks, on
the other hand, may prove to be a better match.

The algorithm described here introduces a simple and robust form
of formant tracking, and augments the frame-based feature vector
used for ASR with an explicit parameterization of the formant
position and motion.

2.  ALGORITHM OVERVIEW

A block diagram of the processing stages in the algorithm is
shown in Fig. 1. The initial filtering and subsequent liftering pro-
cess the wide-bandwidth speech signal at the full sampling rate
(12k samples/sec). All remaining processing occurs at the down-
sampled frame rate (100 frames/sec) with substantially lower
computational complexity.

2.1 Filtering and Adaptation

The filtering stage, after [18], is implemented by integrating



power spectrum estimates weighted by triangular filters that have
bandwidths of 100 Hz for center frequencies below 1 kHz, and
bandwidths of 0.1 times the center frequency above 1 kHz. The
resulting frequency resolution is therefore linear below 1 kHz, and
logarithmic above 1 kHz

The adaptation stage for each frequency channel acts as an auto-
matic gain control which incrementally adjusts an additive loga-
rithmic offset to reduce the distance to a target input/output point.
Adaptation emphasizes onsets and represents changing spectral
peaks more strongly than static ones. Together, these two stages
significantly affect how spectral peaks are identified and pro-
cessed in subsequent stages. Fig. 2.a includes a spectrogram of the
four digits, “nine six one three,” at 10-dB SNR, after filtering and
adaptation.

Figure 1. Processing overview.

2.2 Peak Isolation

Local spectral peaks are first identified independently in each
frame by finding the local maxima in the log-spectral estimate,
after raised-sin cepstral liftering [19]. For each peak (marked in
Fig. 2.a), the frequency position and log magnitude are stored.
Because the raised-sin cepstral lifter alters the level of the local
spectral peak, the log-magnitude value is taken from the corre-
sponding frequency position in the spectral estimate before
raised-sin liftering.

In Fig. 2.a, note the relatively strong temporal correlation between

the frequency positions of the local spectral peaks through for-
mants and formant transitions.

2.3 Threading Peaks

This is the first of two stages which group peaks based on their
spectro-temporal proximity. The task is to connect the spectral
peaks together in time intothreads, and the approach used here is
a form of dynamic programming. Each peak (in each frame) is
connected to the closest thread that extends into at least one of the
last two frames. If the frequency distance to the closest thread is
greater than approximately 10% of the total (warped) frequency
range, then a new thread is started. If no peak connects to the end
of a given thread for two successive frames, then that thread is
ended. Fig. 2.b shows a moving seven-point second-order polyno-
mial fit to each resulting thread. For each thread that includes at
least four peaks, the temporal derivative as implied by the moving
second-order polynomial is also stored.

Figure 2. Peak positions and motion.

2.4 Choosing Three Peaks

The second stage imposes a structure on the threads enabling a
more systematic characterization, and also attempts to reduce
their variance. Threads from the first stage start and end somewhat
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randomly, which makes storing them for analysis or comparison
not obvious. Also, there is significant variance in the reliability of
the thread measurements. That is, dominant formant transitions
are tracked more reliably than small peaks in background noise.

The second stage limits the representation of the threads to three
peaks in frequency for each frame. Three newtracks, centered at
relatively low, medium, and high frequencies, are used to repre-
sent the information from the threads. The log magnitude of the
original spectral peak is used when integrating frequency posi-
tions and derivatives from the corresponding thread. This intro-
duces an inertial response that updates more quickly to more
dominant peaks.

In the implementation, each track is assigned a center frequency,
or DC offset. The three center frequencies are equally spaced on
the warped frequency scale. At each frame the frequency position
of the track incrementally adjusts toward the closest thread in that
frame. The increment of adjustment is a sigmoidal function of the
magnitude of the thread. The equation that describes this adjust-
ment is:

f[n] = α p[n] + (1-α) (0.9 f[n-1] + 0.1 f0),

wheren is the frame index,f[n]  is the frequency of the track,p[n]
is the frequency of the nearest peak,f0 is the center frequency or
DC offset, and the variableα, which controls the rate of the incre-
ment, is a sigmoidal function of the log magnitude of the peak.
Ignoring the DC offset, the equation describes a non-constant
coefficient first-order low-pass filter. The sigmoid maps log mag-
nitude to the appropriate (0,1) interval, so that the filter changes
from low-pass to all-pass. Because the log magnitude of the peak
is measured after the adaptation stages, transitions and onsets
incur the most abrupt track changes.

An identical structure is used to track the frequency derivatives of
the threads. For each of the three tracks, the current frequency
derivative estimate is incrementally updated to the derivative mea-
sured at the closest peak. The size of the increment is a sigmoidal
function of the log magnitude of the peak. A final low-pass filter
with a cut-off at 15 Hz is applied both to the three frequency
tracks, and to the three derivatives. Fig. 2.c shows the frequency
positions for the three tracks, and Fig. 2.d shows the frequency
derivatives.

This parameterization of the motion of local spectral peaks differs
from more traditional formant tracking [5,6] in several ways. The
initial filtering and adaptation greatly influence the resulting spec-
tro-temporal representation. The frequency resolution is warped
to a perceptual scale, and signal dynamics play a significant role
in determining which peaks are identified. The two-stage process
to identify the final tracks, is aimed at identifying the robust,
slowly-varying information which is likely to be highly correlated
with underlying articulator motion. The tracking process also
includes an inertial component dependent on the magnitude of the
(adapting) response of the peak. Initial frequency derivative esti-
mates are calculated before the imposition of explicit frequency
ranges, reducing the influence of artifacts from these heuristics on

the derivative estimates. Finally, by limiting the representation to
three peaks with centers equally-spaced on the warped frequency
scale, some of the complications introduced by the merging and
splitting of higher formants are avoided.

3.  RECOGNITION EVALUATIONS

A discrete-word recognition task was used to evaluate the robust-
ness of a variety of processing schemes. Digits from the TI-46
database were used at a random offset within roughly two seconds
of silence. The system was, therefore, required to distinguish the
speech from the background.

Each digit was modeled using a six-state left-to-right HMM with
continuous Gaussian densities. The forward/backward algorithm
was used to estimate feature-vector means and state transition
probabilities. A diagonal covariance estimate, from the entire
training set, determined a global observation variance. Models
derived from both clean and noisy data were used simultaneously,
with the most probable model determining the digit recognized.

For all processing schemes, the feature vector included 12 ceps-
tral coefficients (c0 was excluded), and 13 cepstral derivatives.
Three peak frequencies, and two frequency derivatives were also
included in the ‘threaded’ evaluations. The frequency derivative
of the highest peak was excluded because it had little variance.

Figure 3. Recognition error rates.

Background noise, shaped to match an estimate of the long-term
average speech spectrum, was added to corrupt the speech signal
for these evaluations. In addition to linear prediction cepstral
coefficients, Mel-frequency cepstral coefficients, and the relative-
spectra (RASTA) technique [20], tests were performed using
MFCC with spectral subtraction, spectral scaling, non-linear
spectral scaling, cepstral mean subtraction, and cepstral normal-
ization. The top two of these last five are included in Figure 3.

In spectral subtraction, an estimate of the background power spec-
trum is subtracted from each frame. Spectral scaling performs a
similar subtraction using log-magnitude power-spectrum esti-
mates. Non-linear spectral scaling was implemented by averaging
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the estimate obtained after spectral scaling with another post-scal-
ing estimate which was scaled (again) to provide the same peak
log-magnitude difference from the background across all tokens.
The weights used in the averaging for non-linear spectral scaling
were iteratively adjusted to improve recognition performance. In
cepstral mean subtraction, a long-term average cepstral vector is
subtracted from each frame. Cepstral normalization was imple-
mented by scaling the length of each cepstral vector to unity. The
recognition system was completely retrained for each type of pro-
cessing.

4.  Conclusion

A general processing scheme is presented which may provide a
more phonetically relevant parameterization of speech. The pro-
cessing includes filtering, adaptation, and peak isolation, together
with a relatively simple two-stage process which parameterizes
the motion of dominant local spectral peaks. The algorithm has
low computational complexity and is robust to background noise.
The resulting characterization may provide an improved match to
segmentally-stationary statistical characterization, and increases
the noise-robustness of a discrete-word recognition system.
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