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ABSTRACT

We describe a family of new techniques for analyzing single- and
multi-unit discharge patterns. These techniques are based on in-
formation theoretic distance measures and on empirical theories
derived from work on universal signal processing. They are capa-
ble of determining transneuron statistical dependencies even when
time-varying responses occur. The response portion contributing
most to information coding can be identified and the coding fi-
delity can be quantified regardless of the neural coding mecha-
nisms be it timing, rate or transneural correlations.

1. INTRODUCTION

For about half a century, the information-bearing aspect of individ-
ual neuron’s discharge patterns has been thought to be thetimesat
which discharges occur. If a neural population encodes informa-
tion about a sensory stimulus, then discharge timing in each com-
ponent neuron should somehow vary with stimulus changes. In
neural systems, both simple stimulus-evoked variations, such as an
average discharge rate change, and complicated stimulus-evoked
variations, such as a change in multi-neuron discharge correlation
structure are observed. Data analysis techniques for single-neuron
discharges such as the PST histogram, the interval histograms, and
several joint interval statistical measureswere inspired by the
mathematical model for single neuron discharges, the point pro-
cess [11]. These measures do not quantify the response to reveal
what stimulus aspects are being represented, when these represen-
tations occur, what the representations are, and the quality of these
representations. The limitation to single unit activity also means
that population coding is not directly probed. Consequently, more
recent work has focused on population activity, using the funda-
mental assumption that coordinated sequences of action poten-
tials produced by groups of neurons collectively represent their
response. Neural ensembles process their inputs to producejoint
discharge patterns that encode those aspects of the stimulus en-
hanced by the ensemble. Thus, today the “neural code” is taken
to mean how groups of neurons, responding individually and col-
lectively, represent sensory information with their discharge pat-
terns [3]. Knowing the code would unlock the secrets of how neu-
rons, working in concert, process and represent information. From
the viewpoint of point process theory, the code is equivalent to the
intensity of an accurate vector-channel, point-process model [14]
for the data. Unfortunately, traditional optimal estimation tech-
niques depend heavily on the intensity’s intrinsic structure (how
one event depends on the timing of others) [3], which is part of the
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Figure 1: A neural system has as inputs the vector quantity X that
depend on a collection of stimulus parameters denoted by the vec-
tor�. The outputY thus also depends on the stimulus parameters.
Both input and output implicitly depend on time. Note that the pre-
cise nature of the input is deliberately unclear. It can represent the
stimulus itself or a population’s collective input.

neural code we seek. Furthermore, stimulus changes induce time-
varying responses, which confound many techniques for quantify-
ing the population codes: Mutual information calculations [7, 15],
cross- and autocorrelation techniques [2], and artificial neural net-
works [13] apply to stationary single-neuron response patterns and
don’t generalize easily to neural ensembles.

Consider the simple system shown in Figure 1. Conceptually,
this system accepts inputsX that represent a stimulus or a neural
population conveying sensory information (parameterized by�)
and produces outputsY that codes some or all of the stimulus.
The boldfaced symbols represent vectors, and are intended to con-
vey the notion that our system is a neural ensemble and has mul-
tiple inputs and multiple outputs. Presumably, stimulus features
preserved in the output are those extracted by the system; those
deemphasized in the output are discarded by the system. To probe
the system and its representation of sensory information, we ex-
perimentally measure the system’s output and its inputs as we vary
stimulus parameters. No change in the response means no cod-
ing of the perturbed aspect of the stimulus; the bigger the change,
the more the system accentuates that sensory aspect. To quantify
change, we need adistance measure: Given two sets of stimu-
lus conditions�1;�2, we need to measure how different the re-
sponses are how far apart they are with a distanced(�1;�2).
This metric needs to apply ensemble responses, to nonstationary
as well as stationary response changes, to changes in transneural
correlations, and to changes in discharge statistics.

While the merits of one measure versus another can be de-
bated, we describe here how to use information theoretic distances
that have a clear mathematical and intuitive foundation. Roots of
the underlying theory are not in the classic results of Shannon, but
in modern classification theory. In this theory, we try to assign a re-



sponse to one of a set of preassigned response categories. The ease
of classification depends on how different the categories are; it is
through this aspect of the classification problem that distance mea-
sures arise. We use this classification theoretic approach because
recent results from universal signal processingthe theory of how
to process information universally without much regard to the un-
derlying distribution of the data provide a technique of measur-
ing distance and demonstrate the technique’s data-processing op-
timality.

2. CLASSIFICATION THEORY

Classification theory concerns how one can optimally classify em-
pirical observations into predefined categories. Stating the prob-
lem formally, a set of observationsR = fR1; : : : ;RLg is to be
classified as belonging to one ofJ categories. The most frequently
studied variant of this problem is the binary classification problem:
which of two categoriesC1, C2 best match the observations. No
general formulae for the miss and false-alarm error probabilities
(PM andPF respectively) are known. What has been found are
asymptotic expressions. When the observationsR are statistically
independentand identically distributed under both categories, a re-
sult known as Stein’s Lemma [5:x12.8] states

lim
L!1

log PF
L

= �D(pC2(R)kpC1 (R)) for fixedPM (1)

whereD(pkq) is known as theKullback-Leibler distancebetween
the probability densitiesp, q.

D(pkq) =

Z
p(x) log

p(x)

q(x)
dx

Note that the definition of Kullback-Leibler distance applies to
both univariate and multivariate distributions.1 What Stein’s
Lemma means is that error probabilities decay exponentially in
the amount of data, with a slope equal to the Kullback-Leibler
distance between the probability distributions defining the clas-
sification problem. This slope, known theexponential rate, can-
not be steeper than the Kullback-Leibler distance for any classi-
fier. Whether we use an optimal classifier or not, the Kullback-
Leibler distance quantifies the ultimate performance any classifier
can achieve, and therefore measuresanyclassification problem’s
intrinsic difficulty. The word “distance” should appear in quotes
becauseD(�k�) violates one of the fundamental properties a dis-
tance metric must have: It is not a symmetric function of its argu-
ments. Be that as it may, geometric theories of the classification
problem show thatno distance metric exists for it, and that the
Kullback-Leibler distance is the distance-like quantity that should
be used to assess how different two categories are [6].

The Kullback-Leibler distance is also related to the ease of es-
timating parameters that define the classic classification problem.
In the situation where two categories differ slightly according to
the values of a parameter vector� symbolically,pC1 = p(�)
andpC2 = p(� + ��) for sufficiently small values of the dif-
ference��, the Kullback-Leibler distance has the form

D(p(� + ��)kp(�)) �
1

2
��

0

F(�)��

F(�) = E
�
(r� log p(�)) (r� log p(�))0

� (2)

1In these definitions, we use the base-two logarithm, which means that
distance has units of bits.
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Figure 2: Individual neurons are given an arbitrary identification
number. The discharge pattern for each is measured, and individ-
ual discharges placed in thebth bin (each bin has width�). Using
the neuron identification number and the presence of discharges
in a binary code, a number denoted byRb is assigned to each bin
to represent which neurons fired during that bin. Because the in-
tensity corresponding to each neuron typically varies with time,
we estimate types for each bin separately using multiple stimulus
presentations.

Here,F(�) denotes the Fisher information,(�)0 means transpose,
r� log p(�) means the gradient of the log probability density
function, andE[�] denotes expected value. The significance of
these formulas rests in the Cram´er-Rao bound, which states that
the mean-squared error covariance matrix�� for anyunbiased es-
timator b� of � cannot be “smaller” thanF�1(�) in the sense
that�� � F

�1(�) is non-negative definite. In particular, this re-
sult means that the mean-squared error of an individual parameter
is lowered bounded by the appropriate diagonal entry of the in-
verse of the Fisher information matrix. Thus for any given stimu-
lus parameter perturbation��, the larger the Kullback-Leibler dis-
tance, the larger the Fisher information, and hence the smaller the
smallest possible mean-squared error. This relationship reinforces
the notion that the Kullback-Leibler distance does indeed measure
how distinct two classification categories are.

Instead of having a probabilistic description of the categories
as in the classic classification problem, in the empirical classifi-
cation problem we have only data. Gutman [8] found a classifier
that is not only optimal (yielding maximal exponential rate), but
will also, given enough training and observational data, produce
error probabilities having thesameexponential rate as the likeli-
hood ratio classifier that clairvoyantly knows the underlying statis-
tical model for the training data. His approach requires the com-
putation oftypes the histogram estimate of the probability mass
function [5: Chap. 12]. We have demonstrated how type-based
classifiers can be used in communication problems [9]. Our ap-
proach is to estimate the Kullback-Leibler distance between types
computed from the neural recordings. From these distance calcu-
lations, we can directly infer when and how well sensory informa-
tion is represented in neural responses.

3. QUANTIFYING NEURAL RESPONSES

To develop a measure of the population’s response, we first convert
the population’s discharge pattern into a convenient representation
for computational analysis (figure 2). Here, a neural population’s
response during thebth bin is summarized by a single numberRb

that equals a binary coding for which neurons, if any, discharged
during the bin. In developing techniques to analyze neural coding,
we need only consider the statistical structure of this sequence. Let
R

(1) andR(2) represent the responses of a neural population to



two stimulus conditions. What we want to measure is the distance
between thejoint probability distributions corresponding to these
responses. Using the Kullback-Leibler as an example, we would

want to findD
�
p(R(2))kp(R(1))

�
.

The most direct approach to estimating distance measures is
to use types in their definitions. This approach has two difficul-
ties bias and poorly formed probability estimates. When the type
for the reference distribution has a zero-valued probability esti-
mate for some letter at which the other type is nonzero, we would
obtain an infinite answer, which may not be accurate (the true ref-
erence distribution has a nonzero probability for the offending let-
ter). To alleviate this problem, the so-called K-T estimate [12] is
employed. Each type is modified by adding one half to the his-
togram estimatebeforeit is normalized to yield a type. Thus, for
thekth letter, the K-T estimate is

bPKT
R (ak) =

(#times ak occurs inR) + 1
2

LR + K

2

Now, no letter will be assigned a zero estimate of its probability of
occurrenceandthe estimate remains asymptotically unbiased with
increasing number of observations. This estimation procedure is
not arbitrary; it is based on theoretical considerations of whata
priori distribution for the probabilities estimated by a type sways
the estimate the least.

Because the Kullback-Leibler distance is non-negative, it can-
not be estimated without bias. While the estimates are asymp-
totically unbiased, in our experience the bias is significant even
for large datasets, and can lead to analysis difficulties. Ana-
lytic expressions for the bias of a related quantityentropy are
known [4], and they indicate that bias expressions will depend on
the underlying distribution in complicated ways. Fortunately, re-
cent work in statistics provides a way of estimating the bias and
removing it fromanyestimator without requiring additional data.
The essence of this procedure, known as thebootstrap, is to em-
ploy computation as a substitute for a larger dataset. In a general
setting, letR = fR1; : : : ;RLg denote a dataset from which we
estimate the quantity�(R). We create a sequence of bootstrap
datasetsR�l = fR�1;l; : : : ;R

�

L;lg, l = 1; : : : ; LB. From each

dataset, we estimate the parameter�̂l(R
�

1;l). The bootstrap esti-
mates cannot be used improve the precision of the original esti-
mate, but they can provide estimates of�(R)’s auxiliary statistics,
such as variance, bias, and confidence intervals.

4. RESULTS

The simplest application of distance analysis is assessing which
part of the response changes significantly as with stimulus
changes. By calculating information theoretic distances from
types, we measure response differencesno matter how they arise.
Figure 3 illustrates the application of this approach to a simple
population of three neurons. Both a stimulus-induced rate re-
sponse and a transneural correlation can be detected, and the rela-
tive contribution of each response component to sensory discrim-
ination quantified. Because Kullback-Leibler distance is related
through Stein’s Lemma to classification error rate, it reveals how
easily the two responses can be distinguished: The bigger the dis-
tance, the smaller the probability of an error in distinguishing the
two. Unit (one bit) increase in distance corresponds to a factor of
two smaller error probability. Theaccumulation of distance with
time is not an arbitrary choice.
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Figure 3: We simulated a three-neuron ensemble responding to
two stimulus conditions. The left portion of the display shows
PST histograms of each neuron, and these indicate that neuron 1
had a rate response to stimulus 2 (ending at the first vertical dashed
line). The right panel shows the result of computing the Kullback-
Leibler distance to measure the difference between the two re-
sponses. The dashed line shows the statistic computed in each
bin and the solid the cumulative value of these component values.
Not only does the rate response create a difference between the
responses, but also a later response difference not evident in the
PST histograms. This difference occurred because of a stimulus-
induced correlation between neuron 1 and 2 in the last six bins.
Interestingly, the correlation response is nearly as significant for
distinguishing the stimuli as the rate response: The contribution of
each to the total Gutman statistic is about the same.

We can use the Kullback-Leibler distance computed over por-
tions of the neural response to detail the effectiveness of neural
coding and what stimulus aspects are being coded. We used re-
lation (2) between perturbations in detectability and Fisher infor-
mation to infer responsiveness. For a given operating point, de-
fined by parameter�0, we estimated the change in the response
of single lateral superior olive (LSO) neurons to systematic stim-
ulus perturbations about this nominal stimulus condition. These
neurons had been thought to be processors of sound location and
which disregard other stimulus changes [10]. To test this theory,
we chose azimuth and amplitude as our stimulus parameters. We
then determined a least-squares fit of equation (2) to the measured
Kullback-Leibler distances (incorporating the K-T modification to
the types and bootstrapping) to estimate the Fisher information
matrix bF(�0). By considering the concentration ellipse [16] de-
fined by��

0bF(�0)�� = 1, we can visually determine the stan-
dard deviation of the maximum likelihood estimator for each pa-
rameter (found by the extent of the ellipse along coordinate axes)
and the general quality of coding from the ellipse’s area. From
these ellipses (figure 4), we found that the initial transient response
of LSO neurons coded sound amplitude more effectively than az-
imuthal location, while the later portions of the response coded
only azimuth. We have thus demonstrated the first known occur-
rence of a neuron time-multiplexing what it is coding in its dis-
charge pattern.
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Figure 4: (top) A post stimulus time (PST) histogram showing a
typical lateral superior olive response to binaural stimulus. The
transient response is characterized by high discharge rates and non
stationary behavior. The sustained response is characterized by a
constant discharge rate. (bottom) The concentration ellipse from
analysis of the transient and sustained responses at the particular
operating point marked by the star. The extent of the ellipse along
the angle axis shows the standard deviation of the expected esti-
mation error of the optimal unbiased estimator of the angle param-
eter at this operating point. Similarly, the extent of the the ellipse
along the level axis shows the standard deviation of the expected
estimation error of the amplitude parameter. Amplitude could be
estimated much more accurately based on observation of the tran-
sient response. Angle could be estimated slightly more accurately
based on observation of the sustained response.

5. CONCLUSIONS

Type-based analysis is the only known technique that can mea-
sure the responsiveness of an ensemble, quantify the various con-
tributions to this responsiveness, and provide some insight into
the nature of the response. The technique is mathematically well-
grounded and uses the amount of available data efficiently. We

can also quantify the degree of response detail warranted by the
amount of data without making the usual implicit assumptions
other variability measures make that the response measure is Gaus-
sian or that the response is stationary. Our results for neural re-
sponse patterns can be generalized to other situations.
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