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ABSTRACT
We present an auto-attendant system, which is based on a
statistical speech recognizer and has been developed for the
Technical University of Crete (TUC) Campus. Auto-attendants
allow remote callers to reach a person or department by simply
speaking an appropriate name. This is the first speech recognition
system in Greece operating in continuous speech and speaker-
independent modes, and we describe our approaches for solving
several special phenomena specific to the Greek language. The
high recognition accuracy of the engine supports several
hundreds of names. Evaluation on our database yielded more
than 97.5% name retrieval for a dictionary of 350 names of
persons and services.

1. INTRODUCTION

The field of automatic speech recognition has attracted a lot of
interest during the last decade, due to its demonstrable increase in
productivity by greatly assisting human operators or by replacing
the human element altogether [7]. In this paper we deal with the
implementation of an auto-attendant system, which allows callers
to reach a person by simply speaking the name of a person or
department. Speech recognition of names over the telephone is a
difficult task, because each telephone channel has its own and
unique signal to noise ratio (SNR) and frequency response. The
complexity of problems, which are faced in this work, need fast
and accurate techniques, which provide robustness for both
speaker and acoustic variability (variation in speech rate, context
and dialect, background noise, room acoustics, unknown
channels). Speech transmitted over telephone lines can be non-
linearly distorted and corrupted by transient interference.

Hidden Markov models (HMMs) are used to represent speech in
our system. Hidden Markov modeling is a powerful technique
capable of robust and succinct modeling of speech [9]. We used
phonemes as our basic acoustic units, which were represented by
Gaussian-mixture continuous HMMs. We compared systems
with different degrees of tying among the Gaussian mixtures,
maintaining a small total number of Gaussians because of the
limited amount of training data that we had in our disposal.

With their efficient maximum-likelihood training and recognition
algorithms, HMMs can be successfully applied today to
constrained tasks in real-world applications. An auto-attendant is
such an example, where the system functions as an automated
receptionist, asking users to answer specially designed questions

and waiting for their responses. The utterances are recognized in
real time using Nuance Communications’ recognition engine [6],
and the recognition result is processed to execute the conference
between the two parties.

The organization of the paper is as follows. In Section 2 we
describe the system’s components and the data collection. The
development of language and acoustic models is presented in
Sections 3 and 4. The paper is concluded in Section 5.

2. DATA COLLECTION

To train our HMM-based speech recognizer, we implemented an
over-the-telephone data-collection system using Dialogic
hardware resident in a 200 MHz Pentium Pro PC with 128
Mbytes of RAM operating under Solaris 2.5.1 (see Figure 1). The
utterances were spoken by respondents into telephone handsets
and recorded directly through an analog connection to the usual
switched telephone network in 8-bit mu-law digital form.

The corpus consists of subjects reading various prompts
organized in sections, as in the Macrophone corpus [8]. The
sections are adapted to our application, and include a set of
newspaper sentences, names of members and departments of the
university, single-word answers, spelled words, digit sequences,
and natural numbers.

The data collection process began by distributing the material to
prospective callers in the form of unique prompting sheets. The
data collection had two phases. During the first phase, in which
we tried to capture speaker variability, 180 prompting sheets of
47 prompts were distributed, and 120 calls were received. Since
the total amount of training data was small, we continued the data
collection with a second phase, in which we collected a larger
amount of task-specific data per speaker from a smaller number
of speakers, using a 136-prompt sheet of task-specific sentences.
During the second phase, the subjects were instructed not to read
the prompts, but to simulate real usage of the system and ask for
the persons or departments using natural language. The data from
some of the callers of the second phase were reserved for system
testing. On sheets for training we had added 20 newspaper
sentences. This phase resulted in 12 callers for training and 10
calls for testing (equal number of males and females). The details
of the training and testing data collected during the two phases
are summarized in Table 1.



3. GRAMMAR DESIGN

Our goal was the implementation of a system without restricting
the way someone could ask for a particular person, department or
university office. Our experience has shown that in Greek there is
a much larger variation than in English in the natural language
constructions that can be used in this type of task.

For example, two phenomena that were faced are the accusative
case and clitic doubling. The accusative case is very common in
asking names, while nominative is also allowable but more
impersonal in conversations. For some speakers of Greek, the
clitic doubling is obligatory, at least for indirect objects, while for
others it is optional, with an emphatic meaning.

Greek: ³ � �� �� ´
English: “Koumpis Konstantinos”

We also had to distinguish members according to their specialty,
since in a campus environment there is a variety of occupations.
A professor, for example, could be named both with his title
³ ´��Professor), as well as with the title “ ” (sir),
while someone else only with “ ”.

For example, for an assistant professor with first name ³ ´
(Vassilis) and last name ³ ´� (Digalakis), some
allowable expressions are (the accusative case for this name is
³ � ´):
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Figure 1: PC-based auto-attendant system using Nuance’s speech recognition engine and a Dialogic D41/ESC card.

1st Phase
Training

2nd Phase
Training

2nd Phase
Testing

Number of Callers 120 12 10
Newspaper sent. 589 239 -

Names of members 1353 1193 1342
Related words 974 - -
Answers of one

word
1042 - -

Spelled words 455 - -
Numbers 689 11 -

Total 5102 1443 1342

Table 1: Greek auto-attendant corpus



“ � � � � � � ´

“ � � � � � ;”

“ � � � � � ”

“ �� � � � � � ”

“ � � � �  � ;”

³ � � � �� � �  � ;”

We designed a grammar using Nuance Developer’s Toolkit
[6]. The grammar was written in the toolkit’s grammar
specification language that implements finite state grammars, and
covered a large number of natural language expressions.
Grammar constraints, like the ones implied by the case used
(accusative or nominative) or the gender, were implemented
using different paths in the grammar. Members of the university
were clustered according to their occupation (e.g. professors vs.
others), and their names appeared in different subgrammars in
order to implement consistency constraints between the possible
ways of asking a person and the person’s real occupation.
Understanding was achieved using the toolkit’s natural language
capabilities. Interpretations for spoken commands are achieved
by filling the values of certain slots based on the particular
grammar path that was followed in the recognizer string.

4. SYSTEM DEVELOPMENT

In this Section we present the experiments which we did in order
to optimize the accuracy of the recognition engine by testing
several acoustic models. By using sophisticated modeling
techniques to exploit all available training data, our system
connects to the correct user 97.5% of time.

Experiments were carried out using Nuance Communication’s
batchrec [6], which is based on SRI’s DECIPHER system [4]
and the full grammar described in Section 3. The system’s front-
end was configured to output 8 cepstral coefficients, cepstral
energy and their first and second derivatives. The cepstral
features are computed with a fast Fourier transform (FFT)
filterbank. We investigated both phonetically tied mixture
(PTM), where the same Gaussians are shared among all
allophones of the same phone, and genonic HMM models [4],
where the same Gaussians are shared among automatically
derived clusters of HMM states. The initial context-independent
boot models were constructed by mapping similar sounding
context-independent PTM English models to the phones
contained in the Greek phone set. We used two measures to
evaluate the different systems, the conventional word-error rate
(WER) as well as the natural-language error rate (NL error rate,
NLER). WER is based on the transcriptions of the test sentences,
whereas NLER is the percentage of the times the system connects
the caller to an incorrect extension. In all the comparisons
between different acoustic models that follow, the test set
consisted of sentences which might not be fully covered by the
grammar, but consisted of valid commands, i.e. the caller tried to
connect to a person or department that was in the dialer database.

We initially performed some experiments to determine the best
phone set. In these experiments we used a PTM system with a

100 Gaussians per phone, and the training procedure consisted of
two context-independent and two context-dependent iterations of
the forward-backward algorithm [1]. The context-dependent
models were triphones, with backoff to the corresponding
biphone models when a triphone was not seen a sufficient
number of times in the training. The best phone set consisted of
40 phones, presented in Table 2. We found it helpful to
distinguish between stressed and unstressed vowels (indicated by
the symbol ‘+’), and this is particularly convenient since in Greek
stress helps to disambiguate the meaning of certain homophone
words. Distinction between long and short vowels is not very
important in modern Greek [2], except for the vowel “´��phones
“ ” and “y”, which correspond to the English phones “ih” and
“iy”). In addition, we used allophones for certain consonants that
are used when these consonants appear before the vowel “´��and
these are denoted by the symbol 2 (e.g. ³ �´).

In a second set of experiments, we evaluated the effect on
performance that the amount and origin of the training data had.
Specifically, we compared three PTM systems trained with data
from the first phase only (PTM_04 - 5120 general training
sentences from 120 speakers), with data from the second phase
only (PTM_05 - 1443 task-specific sentences from 12 speakers)
and with the combined data from both phases (PTM_01). The
results are presented in Figure 2, and we see that the system
trained on many speakers is significantly better than the one
trained on 12 speakers, since it has over three times more training
data. However, simply adding the small amount of task-specific
data of the second phase halves the NLER, reducing it to 3.3%.
The exact word and NL error rates of the various systems
evaluated are summarized in Table 3.
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Table 2: Greek phone set used in our system.

Experiment Word %ERROR NL %ERROR
PTM_01 20,26 3,28
PTM_04 24,61 6,41
PTM_05 31,02 10,13
PTM_06 20,08 3,20
PTM_07 19,77 3,58
PTM_08 21,32 3,50
PTM_09 21,63 4,55
GEN_01 18,97 2,46
GEN_02 18,28 2,98
GEN_03 17,72 2,91

Table 3: Word- and natural-language error
rates of various acoustic models.



In the next phase, we used a different booting procedure. We did
not initialize the models of Greek phones by copying similar U.S.
English models, but initialized the Gaussians from alignments
using the expectation-maximization (EM) algorithm [3]. We
evaluated four different PTM systems, PTM_06, PTM_07,
PTM_08 and PTM_09 with 100, 64, 50 and 32 Gaussians per
phoneme, respectively. We can see from Table 3 that the
performance of the system PTM_06 is similar to that of PTM_01,
which was initialized from English phones, whereas the systems
with smaller numbers of Gaussians per phoneme are significantly
worse.

In the final set of experiments, we compared the PTM system to
systems with smaller degrees of tying. We clustered the PTM_01
system to genonic systems with 100 (GEN_01), 193 (GEN_02)
and 340 (GEN_03) genones (Gaussian codebooks) with 32
Gaussians per genone, following the procedure described in [4].
The genonic systems outperformed the PTM system
significantly, reducing the word error rate by 12.5% and the NL
error rate by 25%.
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Figure 3: Comparison between the best PTM and Genonic
Model.

The best system achieved a NL error rate of 2.46%, which means
that the caller was connected to the correct person or department
97.5% of the time. It is worth noticing that the systems PTM_01
and GEN_01 had the same total number of Gaussians, but with

different degrees of tying: PTM_01 had 30 codebooks with 100
Gaussians each, whereas GEN_01 had 100 codebooks with 32
Gaussians each. These two systems are compared in Figure 3.

5. CONCLUSIONS

In this work, by using sophisticated modeling techniques to
exploit all available training data, we managed to reach a higher
level of accuracy for an auto-attendant application. Our
experiments showed that our system connects to the correct user
97.5% of time. This auto attendant is now in public use at the
university. Our system is the first speech recognition system in
Greece operating in speaker-independent and continuous-speech
modes, and we addressed issues relating to the phonetic alphabet
and the grammatical constraints of the Greek language. In
addition, we compared continuous HMM systems with similar
numbers of Gaussian distributions, and we found that those with
a smaller degree of tying among different HMM states were
significantly better.

This work can be extended in several aspects in the future. For
example, by working in auto-attendant applications with a much
larger number of PBX subscribers [5]. Such applications are
expected to be a critical component of further implementation of
computer-based secretarial assistants and database access and
management [7].
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Figure 2: Comparison of models using different amounts and
types of training data.


