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ABSTRACT

This paper describes new techniques for modeling and
generating speaker-dependent pitch contours for sentences.
Speech synthesis applications could generally benefit from
such speaker-specific pitch contours. The proposed algo-
rithms begin with an existing pitch contour for an utterance
and use data from training utterances to modify the con-
tour to be appropriate for a second speaker. One approach
modifies the original pitch values to statistically match the
desired speaker at each point in time. A second novel ap-
proach uses dynamic time warping (DTW) to select a new
pitch contour from a pre-determined code book and time-
align the chosen contour to the original sentence. Such
contour mapping can transfer one speaker’s natural pitch
characteristics to another person’s speech. Informal listener
evaluations suggest that while shifting the frequency range
of the original pitch contour yields some improvement, bet-
ter results are obtained by applying DTW techniques to
time-warp the contour from an existing sentence produced
by the desired speaker.

1. INTRODUCTION

The intonation of a sentence or phrase is represented by
changes in the pitch pattern. In English, intonation varies
as a function of stress and can convey emotions such as
anger and surprise. Pitch can control whether an utterance
is interpreted as a statement or a question. Furthermore,
pitch variations impart varying degrees of lexical stress at
the syllable and phrase level. Thus, the pitch contour helps
convey the message of a spoken communication. Sentences
in spoken English can be divided into intonational units
known as tone groups or intonational phrases. Tone groups
indicate afterthoughts, scope, or restrictions and are often
marked by commas in written text [4, 9].

An appropriate pitch structure is important for the per-
ceived naturalness of synthesized speech. There are sev-
eral models for generating pitch contours for text-to-speech
(TTS) systems. Modern TTS systems include rules for
sentence-level pitch changes and also account for the ar-
ticulation of speech segments. These algorithms construct
an intonation contour according to the sentence type and
therefore predict how pitch changes with syntactic struc-
ture, lexical stress pattern, rhythmic position, and empha-
sis [2, 3, 7, 8]. In addition, some TTS systems go beyond
standard rule-based pitch generation and use automatic
data-driven modeling [5].
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We hypothesize that intonation contours carry speaker
traits, and thus an accurate speaker-dependent contour
is important for speaker-specific forms of speech synthe-
sis such as waveform concatenation. Speakers of different
languages and dialects apply different intonation patterns,
and individual speakers may also apply rules in unique
ways. Psychoacoustic experiments support the theory that
Fy contours contain speaker individualities [1].

This study proposes several algorithms for modifying the
pitch contour of a sentence for the sake of imparting per-
ceptually important characteristics of a desired speaker. We
start with a pitch contour from reference data or a refer-
ence speaker for the sentence under test (S.U.T.) and use
the contours of known training sentences to shape a con-
tour for the utterance which is customized to the desired
speaker. These algorithms require a set of sentences to have
been collected and phonemically labeled for both the refer-
ence and desired speakers. The result of each algorithm is
a new pitch contour which may be applied to the S.U.T.
A synthesis system could use general rules to produce a
generic pitch contour and then use one of the proposed al-
gorithms to modify the generic contour into one which con-
tains speaker-specific structure so that the final voice will
be recognized as the desired speaker.

2. ALGORITHM DESCRIPTIONS

This section presents three algorithms for speaker-
dependent pitch contour modeling and generation. Table 1
shows an overview of the techniques. For the first two al-
gorithms, statistics are used to form a mapping function
from a reference speaker’s pitch frequency to the appro-
priate value for a second speaker. This approach works
from the paradigm of a one-to-one mapping of the pitch fre-
quencies between any two speakers. In contrast, the third
algorithm employs dynamic time warping (DTW) to es-
timate the mapping of pitch contours between sentences.
The algorithm based on DTW principles selects and time-
warps a pitch contour according to known sentence-level
contours for the speakers. Once the desired pitch contour
has been generated, the Pitch-Synchronous Overlap and
Add (PSOLA) algorithm is used to adjust the pitch [6].

For each algorithm, we present an informal subjec-
tive evaluation and discuss the strengths and weaknesses.
Although the major intention of this study is to sug-
gest prosody adjustment algorithms for speaker-dependent
speech synthesis, we demonstrate the pitch generation algo-
rithms using natural test utterances to avoid the artifacts



Main Idea

Algorithm Approach Assumptions

Gaussian statistical Gaussian distribution
Scatterplot statistical  independence of segments
Code book DTW model sentence contours exist

Gaussian normalization
estimate pitch-mapping function
use existing sentence contours as models

Table 1: Overview of algorithms

inherent in existing synthesis systems. Sentences from the
TIMIT database were used in this evaluation. The listener
test included both a set of seven speakers who had seven
sentences in common and several pairs of speakers who had
two sentences in common.

2.1. Gaussian Normalization

The first algorithm uses Gaussian normalization to perform
a mapping from the reference pitch values to the desired fre-
quencies. The sample mean and sample standard deviation
of the pitch are calculated for each speaker, and then pitch
frequencies are translated from one speaker to another by
assuming a Gaussian distribution.

Algorithm: (A) Perform pitch tracking of training sen-
tences from both the reference and desired speakers. (B)
Collect data on pitch values for each speaker. Estimate
the mean and standard deviation of pitch for each speaker.
(C) For the S.U.T., use Equation 1 to convert each original
pitch value to a new frequency on a frame-by-frame basis.

The reference speaker’s pitch statistics are projected to
match the mean and variance of a desired speaker via the
equation

noh (1)

T2 = s o2+ p2
g1

where p and o represent the mean and standard deviation
respectively. While one could use only the mean, including
the standard deviation yields improved accuracy.

Results: Figure 1 shows the original and modified pitch
contours when this algorithm is applied to the sentence,
“Don’t ask me to carry an oily rag like that.” In this exam-
ple, the reference and desired speakers have a similar high
pitch range but a different low pitch range, hence the dif-
ference in the modification of the pitch profile according to
the mean pitch and standard deviation.

Fvaluation: The results from an informal listener evalu-
ation indicate movement of the pitch contour in the proper
direction; however, few of the desired individual speaker
characteristics are imparted. Direct contour comparisons
confirm that the new pitch contour is at a distinctly dif-
ferent frequency, and thus the resulting speech sentences
are perceptively different from the originals. The resulting
speech does not possess much of the fine prosodic structure
of the desired speaker except for the proper pitch range.
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Figure 1: Example original and modified pitch con-
tours for Gaussian algorithm

In most cases, the modified speech sounds as if the ref-
erence speaker is still producing the speech, but for some
speaker pairs, listeners concluded that the speech was from
the desired speaker but with some speech abnormality. This
technique is not satisfactory for reproducing the desired
speaker’s pitch for long utterances, but it would suffice for
short speech segments. Advantages to this approach are
the simplicity of its implementation and the ability to use
it with small amounts of training speech.

2.2. Scatterplot Pitch Modeling

This second algorithm develops a unique mapping function
from the pitch of the reference speaker to that of a desired
speaker. The main concepts are to generalize the Gaussian
algorithm by not assuming a Gaussian distribution and to
allow some level of temporal-based phoneme dependency.
This algorithm begins with a training set of known pitch
mappings and finds the best-fit polynomial as the selected
mapping function.

Algorithm: (A) Begin with a database of training sen-
tences possessing the same utterance sequence for reference
and desired speakers. Estimate the mean pitch for each
phone for both speakers. (B) Construct a scatterplot model
of mean pitch for the two speakers with one data point for
each voiced phone in the database. Create the data set
by matching the pitch values produced by each speaker for
each phone in the database. Include data only where both
speakers produced the same phoneme at the same location
in the utterance. (C) Use the method of linear least squares
to find the best-fit n'™ order polynomial for the given set of
scatterplot data points. (D) For the input S.U.T., use the
new mapping function to convert each reference pitch value
to a new frequency on a frame-by-frame basis.

After experimenting with different order polynomials
(1st-10th order), we chose to fit a cubic function. In prac-
tice, the algorithm sometimes yields near-linear mappings
and sometimes produces functions that vary noticeably
from linear. If plotted similarly, Gaussian normalization
would always create a linear mapping response with control
over only the slope and intercept of the line. By matching
the pitch values for phones produced at the same sentence
positions, it does introduce some level of context sensitivity
across the sentence.

Results: Figure 2 shows a sample scatterplot of pitch val-
ues between two speakers. The solid line is the best-fit cubic
polynomial for the data, and the dashed line shows the func-
tion x = y for reference. Figure 3 shows the original and
modified pitch contours when this algorithm is applied to
the utterance, “She had your dark suit in greasy wash water
all year.” Note that the frequency shift is not constant but
varies according to the polynomial function in Figure 2.

Fvaluation: An informal listener evaluation suggests that
this algorithm performs slightly better than Gaussian nor-
malization but still imparts only a small portion of the de-
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Figure 2: Example scatterplot of pitch vs. pitch
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Figure 3: Example original and modified pitch con-
tours for scatterplot algorithm

sired speaker’s individual characteristics. For some speaker
pairs, the results were not perceptually different than for the
Gaussian algorithm. At times the resulting pitch-modified
sentence was still noticeably similar to the original pitch
contour, and even in those cases where the modified sen-
tence was noticeably different from the original, the re-
sult was not necessarily perceptually closer to the desired
speaker.

2.3. Sentence Contour Code Book

The code book algorithm uses DTW to select the closest
pitch contour from an available training sentence database.
After finding the matching pitch contour in the code book,
this contour is mapped onto the S.U.T. The goal is to im-
part an actual sentence-level intonation contour from the
desired speaker onto the S.U.T. while maintaining the ex-
isting lexical stress pattern of the original sentence. Figure 4
illustrates the flow diagram for this algorithm.

Algorithm: (A) Estimate the pitch contours for the in-
put S.U.T. and for each sentence in the training database.
(B) Find the individual time-warping path from each of the
reference speaker’s training sentences to the S.U.T. (C) Se-
lect the sentence from the database which has the smallest
mismatch distance from the reference sentence as measured
via DTW. (D) Generate a new pitch contour by warping
the pitch profile closest to the S.U.T.

This algorithm uses the DTW distance to compare the
S.U.T. with all sentences in the database produced by the
same speaker. After finding the closest matching sentence,
the algorithm selects the same sentence produced by the de-

sired speaker. Thus, the database must contain exactly the
same set of sentences produced by each speaker. Dynamic
time warping is performed between the two speakers’ ut-
terances of the chosen sentence. Phone or word boundaries
can be used as intermediate DTW endpoint constraints to
minimize the lexical and textual effects, but this introduces
the problem of aligning the phones when speakers produce
different phonemes for the same utterance. The resulting
warped pitch contour is time-warped again onto the sen-
tence under test. There are not necessarily two separate
warpings of the pitch profile, but the warping paths can be
combined and applied in a single step.

By selecting a pitch contour from the training corpus pro-
duced by the desired speaker, this algorithm ensures that
the final contour has the same pattern as that sometimes
produced by the desired speaker. Using DTW to compare
the same sentence from each speaker helps minimize lexical
stress while maintaining the large-scale intonation differ-
ences between the speakers’ production of the same sen-
tence. Finally, warping the desired contour onto the origi-
nal helps maintain aspects of the original intonation pattern
while imparting characteristics of the new speaker. Since
it uses actual contours from the desired speaker, this algo-
rithm inherently moves the pitch to the proper frequency
range.

Results: Figure 5 shows the original and modified pitch
contours when this algorithm is applied to the utterance,
“She had your dark suit in greasy wash water all year.”
Notice how the time-warping aligns the chosen contour as
closely as possible to the original pitch contour of the sen-
tence.

Fvaluation: Compared with the other algorithms pre-
sented here, the code book algorithm showed improvements
in more cases and a generally stronger approximation of the
contours produced by the desired speaker. For some cases,
we judged that the pitch contours shifted only slightly to-
wards those of the desired speaker, while in other cases
the pitch contours moved more noticeably. The greatest
strengths of this code book algorithm are that it uses actual
example contours and takes into account the comparison of
known contours between the two speakers.
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Figure 4: Flow diagram for code book algorithm
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Figure 5: Example of pitch contour generation with
the code book algorithm.

(a) The pitch contours chosen from the database
(b) The original and modified pitch contours

3. IMPLEMENTATION

Accurate pitch estimation is important for the present
study. There are several well-known methods for pitch
tracking, but we must handle the additional issue of time-
warping the pitch contour for unvoiced sections of an ut-
terance. In unvoiced speech the pitch is typically ignored,
but a numeric value must be provided for DTW regardless
of voicing. We achieved the best results when we generated
a separate cubic spline interpolation for each unvoiced sec-
tion. Moreover, when implementing these algorithms, care
must be taken to prevent pitch doubling and halving effects
from adversely changing the resulting models.

The code book algorithm uses dynamic time warping to
determine the mapping between two different pitch con-
tours. This study does not use a spectral coefficient scheme
often used with DTW but instead directly matches the pitch
super-structures. We applied Type IV local constraints as
well as global constraints that limit the repetition and skip
rate to two frames each. The warping is generally performed
on a sentence level with endpoint matching by the limits of
the voiced sections of the sentences. Where the identical
sentence is available from both speakers, the warping can
be improved by using additional endpoint matching to take
advantage of word or phone boundaries.

Although the evaluations presented above use naturally-
produced sentences, these pitch-generation algorithms are
intended for use within speech synthesis systems. Thus, we
have applied generated pitch contours to a concatenative
speech synthesis system that uses a small database. In an
informal listener test, we applied the proposed algorithms to
several sentences of synthesized speech. For some sentences,
the artifacts introduced by the synthesis system prevented
us from being able to discern the change in pitch contour,
but for other sentences the contour change was noticeable
and did affect listener perception.

4. CONCLUSIONS

We have presented and evaluated several new algorithms for
generating a speaker-dependent pitch contour when given
an original reference utterance. The three algorithms do
not attempt to reconstruct the precise pitch contour which
the desired speaker would have actually produced for the
sentence, but the goal is to generate contours which provide
sufficient acoustic cues to persuade the listener that the
desired speaker may have produced the sentence. Future
TTS systems would benefit from the advantages of having
such speaker-dependent contours.

The three proposed algorithms are divided into two dif-
ferent approaches: statistics and dynamic time warping.
The statistical algorithms shift the pitch contour to the
range appropriate for the desired speaker but do not change
the overall shape and structure of the contour so as to im-
part detailed speaker characteristics. Other research [1]
supports our conclusion that changing the pitch with a map-
ping function is not sufficient but that it is better to adjust
the dynamics of the pitch structure. The time-aligning con-
cept of DTW generally yields useful pitch contours which
approach those created by the desired speaker.

Each of these algorithms carries its own advantages and
disadvantages. The Gaussian algorithm is simple enough
that we recommend using it as a minimum standard. The
scatterplot algorithm performs better than the Gaussian
algorithm, and its additional complexity and computation
are usually justifiable. Pitch contours produced by the code
book algorithm are of reasonable quality because they are
truly representative of the contours actually generated by
the desired speaker. Based on subjective evaluation, we
feel that the scatterplot and code book algorithms yield the
most promising results.
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