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ABSTRACT x[n] yin] xIn]

Noisy Receiver ———»
This paper proposes several methods for noise reduction us- channel
ing deterministic side information about the desired signal
as a constraint on the reconstruction. Two forms of side in- 2 | Lowsw,
formation are considered separately: short-time linear pre- a(.) > clean
dictive coefficients, and short-time zero-phase impulse re- channel

sponse coefficients. We derive general expressions for the

ML, MAP and MMSE estimators, and develop algorithms Figure 1: Signal recovery with side information
that yield the ML estimators with the above side informa-
tion for speech corrupted by additive white Gaussian noise.
We also explore the use of these methods in the traditional
noise reduction problem with no side information.

and zero-phase impulse response coefficients as side infor-
mation. For the case of LP coefficients as side information,
we provide a simple algorithm that yields a good approxi-
mation to the ML estimate. As an alternative, using zero-
1. INTRODUCTION phase impulse response coefficients as side information, we
develop an algorithm that gives the exact ML estimate.
Many noise reduction systems assume only statistical infor-  The results in this paper can also be applied to the tra-
mation about the noise and about the signal to be recoveredgitional problem of single-sensor signal enhancement with-
In some scenarios, however, as suggested in figure 1, thergyt side information. From the noisy signal, parameters of
also exists deterministic side information about the desiredthe speech can potentially be estimated and used as con-
signal which can be used to assist recovery. For examplestraints for the algorithms presented in this paper. We con-
an existing full-band but noisy analog communications in- sider such an approach in an experiment, as we determine
frastructure may be augmented by a low bandwidth digital the maximum likelihood LP parameters from noisgeph,
side channel. As another example, in a two-sensor scenariogng then, considering the speech as.thinown parameter,

the source signal, while the other observes the source undisggefficients as side information.

torted but can only record or transmit a low bandwidth rep-
resentation of the signal.
For the general problem of signal estimation with side

?nformation, we derive the maximum likelihood (ML), max- 1o MMSE and MAP estimators are derived from theos-
imuma posterlorlprobabmty (MAP), and minNIMum mean = o gy density function. Letr denote the zero-mean short-
squared error (MMSE) estimators. Since spectral shapingy; ., speech vector of lengt andy = « + w denote
parameters are often used to convey a succinct descriptiony, noisy observation of, wherew ~ (0,02 7). Let
of speech, it is logical to consider them as side information. - = g(z) be the corresp(;nding side inform’ati%n which is
We consider the use of linear prediction (LP) coefficients , yotarministic function of. Note thaty and » are,condi-
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2. MMSE AND MAP ESTIMATORS




JXIY)f(Z]1X)

2
FZIY) @
FX)Y)
- { sy TXES 3)
0 otherwise.

Equation (2) follows from the fact that andy are condi-
tionally independent given. Equation (3) follows from the
fact that the side channel informatieris deterministically
related to the source. Conditioned on a particular value of
= X, z = g(x) with probability 1.

Note that thea posterioridensity in equation (3) is sim-
ilar to f(X|Y), thea posterioridensity without side infor-
mation. Given the two measurements= 7 andy = Y,
the denominator in equation (3) is a constant normaliza-
tion factor. To within the normalization factor, the density
F(XY, Z) isidentical tof (X|Y") inside the region of sup-
port described by/(X) = Z and zero otherwise. Given

this understanding, the nature of the two estimators is quite

clear.

The MMSE estimator is given by prs e = Elzly, 2].
The form of the estimator can be simplified using equ
tion (3):

a-

tymse = FElzly, 2] (4)
_ / X J(X|Y, 2)dX 5)

1
W/SXJ"(XD/)dX ©6)

The MMSE estimator is simply the centroid of the density
F(X]Y) in constraint regiors. Note thati yrar s is notin
general an element &. For the case whel® is convey, it
is clear thatyrprsr € S.

The MAP estimatorz s 4 p, is the value of: that max-
imizes the density in equation (3). The density is only non-
zero forg(X) = Z. Thus the MAP estimate is given by:

(7)

The estimator is the solution to a constrained optimization
problem. An example of a tractable problemig({fX'|Y") is
a Gaussian distribution ar8lis convex. The MAP estimate

ZArAP = argmasxf(X|Y).
we

is then a maximum of a concave function over a convex set,

which can be solved by a number of numerical algorithms.

3. ML ESTIMATOR

The ML signal estimate assumes no prior statistics for the
speech signal. The ML estimate of the speech segment i
the X that maximizes the following likelihood function:

Y, z|x) = f¥VlZ,X)f(Z]|X) (8)
FY1X)F(Z]1X) )
_ {f(Y|X) if X €8 (10)

0 otherwise.

Figure 2: MMSE, MAP, and ML estimates. The shaded re-
gionis the constraint regid®. The ellipses are the contours
of equal probability for the densit§i( X |yo ), the maximum

of whichis atE[x|y = wo].

The ML estimate is thus the result of maximizing the likeli-
hoodf (Y| X') over the constraint regio®.

For the case of additive white Gaussian noise, the points
of equal likelihood are equidistant from the mean= vy,
which implies that the ML estimate is the minimum distance
projection ofy onto the constraint s&:

N
~ . 2
== i — Yi ) 11
Eyp = arg Ixnelgg(l‘ yi) (11)
wherez; andy; are components of the vectarsandy re-
spectively. In the frequency domain, the equation is written
as:

27
Ty = argmeiél/ |X (e¥) = YV (e/*)|?dw. (12)

z 0

Figure 2 shows an example of the estimators for a two-
dimensional Gaussian random vectoand a noisy realiza-
tiony = yo. The shaded region is the constraint reg&n
representing all signals meeting the constraints. The el-
lipses are the contours of equal probability for the density
F(X]Y), the maximum of which is ab[x|y = yo]. Note

thatzysr, andz s ap are inS, while z 73755 is not.

3.1. LP coefficients as side information

Linear predictive coefficients provide an efficient represen-
tation of speech, and are therefore an appropriate choice of
side information for transmission through a low bit-rate side
channel. Let the side information describidye the coeffi-
cients{a;, i = 0,1, ..., M} of the LP filter of order}/. Be-
cause it is derived from values of the autocorrelation func-
tion of the clean speech, denoteg, the side information

Jepresents a constraint only on the Fourier transform mag-

nitude of the estimate.

We first show that if we impose no constraints on phase,
the minimum-distance elementgavill have the same phase
asY(e/*). In equation 12 note that the integral is mini-
mized if the distance betweeXi(e/“) andY (/%) is min-
imized for allw. Consider a particular frequency = wy,



and letX (e/*7) = |X|e/* andY (¢/“?) = [Y]e?. The
squared distance betwedf{e?“°) andY (e?¥?) is

J X (e720) = Y (7))

[ X2+ VP = 2[X[[Y|(cos(0 — ¢)),

(13)
(14)

which is minimized wherd = ¢. Thus the minimum dis-

tance estimate will have the same phase as the noisy real-

ization.

Knowing that the estimate shares the same phase as the

noisy realization allows us to specify a new constraint set
S ={x eS| LX(e?%) = LY (e/¥)} and to simplify the
expression in equation (12):

27
b =argmiy [ ()] = V() Pl (1)
reS’ 0
There is no clear solution to the constrained minimization

in equation (15). A simple solution results, however, if we
consider a slightly modified distance measure:

27
[ = e s ae)
0
The time domain expression for equation (16) is

& = arg Hélsq (Ro[i] = Ry[)*,

(17)

whereR, andRR, are the autocorrelation functions:oaind

is best described as an operation in frequency, whiland
P5 are best described as operations in time:

Ry, [n] =-M ..M

Prufn] = { uln]  otherwise (1)
jwy Ue?¥) if U(e/*) >0
PU((e! = 22
2U (") { 0 otherwise (22)
_ R;,[0] if u[r] > Ry,[0]
Pouln] = { u[n]  otherwise. (23)
Lettinguy = R,, the conventional projection onto con-

vex sets (POCS) algorithm is given by the iteratign, =
Pu;, whereP = P, P,P; . The sequencéu;}:2, con-
verges to some point iig [2]. In order to converge on the
minimum-distance projection at, onto S, the algorithm
must be modified [1]. Let; = R,, and define the sequence

{ui}i2o by

ur = Prug, vl = U1 — U

uz = Pauy, vz = Uz — Ul

uz = P3U2, vz = U3 — U

ug = Pi(us—wv1), va = v1+us—us

us = Po(ua—v2), vs = vatuz—uy

Ug = (U5 — 123), Vs = V3 + Ug — Uy (24)
ur = Pi(ug—wa), vr = vitur—us

ug = Po(ur—wvs), vs = vs+usg—ur

ug = Ps(ug—vg), vg = Vg uy—us

The sequencéu; }{2, converges to the minimum-distance

y respectively. Given the one-to-one correspondence be-projection of 2, onto Sg. The Fourier transform of the

tween the LP coefficientsy;, i = 0,..., M }and{ R,[i], i =
0, ..., M} [5], the constraint se%’ on2 maps to a constraint
setSponR;: Sp = {R; | Ry[{] = Ry,lil,i=0,..., M}.

vectoru = lim;_, » u; is the squared magnitude response of
the desired estimate. The phase of the estimate is assigned
the phase of;, which is justified above. This estimate is not

The estimate in equation (17) is therefore the one whose authe ML estimate, however, because of the approximation

tocorrelation function is the minimum-distance projection
of R, ontoSk.

3.2. Projection onto convex sets

In this section we describe the minimum-distance projection
of R, ontoSg using projection onto convex sets. The con-
straint setSg can be described as the intersection of three
convex sets. We define the sets on the Hilbert spacd
finite-norm discrete sequences:

Cy = {uel®|u[i]= Ry,[i], i=—M, ..., MY18)
Cy = {u€l®|U(e*) real, positive Yw} (19)
Cs = {uel®]||u[i]] < Res[0] Vi}. (20)

The setsC’; and C's ensure that the signals are legitimate
autocorrelation functions. We denote the projection opera-
tors P1, P, and Ps which perform the minimum-distance
projections onto the setS;, C-, andC5 respectively. P,

made in equation (16).

3.3. Zero-phase impulse response coefficients

Equation (15) indicates an exact ML solution subject to a
modification of the side information. The time domain ex-
pression for equation (15) is

arg min > (w2, [i
2

z = ] = u:p[i])?, (25)
wherez,, andy,, are the zero-phase impulse responses of
x andy respectively. Let the side information §eg.,[7],
i=0,..., M}, thefirstA + 1 zero-phase impulse response
coefficients ofz,. The side information describes a con-
straint set one.,: S,p, = {z.p | T:pld] = zospld], 1 =
0,...,M}. The setS,, is the intersection of the following
two convex sets of:

{u € | ufi] = zop[i], i = =M, ..., M {26)
{u €17 | U(e?*) real, positive Yw}. (27)

1
Cs



The setC'; ensures that the sequences$in are legitimate The same experiments were performed using zero-phase

zero-phase impulse responses. coefficients determined from the clean speech as side infor-
The ML estimate is calculated by means of a POCS al- mation. For these experiments we used the algorithmin sec-
gorithm. The projection operatord and P, which per- tion 3.3. Diminished returns in perceived quality occurs be-
form the minimum-distance projections onto the g&tsind yond 14 coefficients. The performance characteristics of the
C'5 respectively, are given by algorithm are similar to the LP algorithm: improved intelli-

gibility at very low SNRs and no effect at high SNRs. The

Piuln] = { Tozpln] n = _M’ o M (28) enhanced speech has the same perceptual properties as the
u[n]  otherwise speech from the LP algorithm, including a slight harshness
PU(el%) = Uedy if U(e?*) >0 (29) at low SNRs. The algorithm also outperforms the Wiener
’ 0 otherwise filter described above.

. ) The final experiment involves single-sensor noise reduc-
To obtain the zero-phase response of the ML estimate, the;,, \yithout side information. The LP coefficients are esti-

minimum-distance projection algorithm proceeds as in equaipated from the noisy speech using ML estimation [3, 4].

tion'(24); the modification of equgtion (24) to accommodate Now, considering the speech as tiv&nown parameter and
two ms?ead ofthree'convex setsis ObV'OUS' The'pha}s.e Ofthépe | p coefficients as side information, we find an approxi-
ML estimate is assigned the phaseypiwhich is justified mate ML estimate of the speech using the algorithmin sec-

above. tion 3.2. Preliminary results suggest that the approach has

promise.
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the noisy speech. For the purposes of comparison, we con-

sider speech enhanced by a Wiener filter, where the power

spectrum of the source is approximated by a 12-pole model
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the approximate ML algorithm using 12 coefficients gives

perceptually better results. For the Wiener-filtered output

the noise is highly correlated to the speech, whereas for the

approximate ML algorithm output the correlation is less no-

ticeable.



