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ABSTRACT

This paper proposes several methods for noise reduction us-
ing deterministic side information about the desired signal
as a constraint on the reconstruction. Two forms of side in-
formation are considered separately: short-time linear pre-
dictive coefficients, and short-time zero-phase impulse re-
sponse coefficients. We derive general expressions for the
ML, MAP and MMSE estimators, and develop algorithms
that yield the ML estimators with the above side informa-
tion for speech corrupted by additive white Gaussian noise.
We also explore the use of these methods in the traditional
noise reduction problem with no side information.

1. INTRODUCTION

Many noise reduction systems assume only statistical infor-
mation about the noise and about the signal to be recovered.
In some scenarios, however, as suggested in figure 1, there
also exists deterministic side information about the desired
signal which can be used to assist recovery. For example
an existing full-band but noisy analog communications in-
frastructure may be augmented by a low bandwidth digital
side channel. As another example, in a two-sensor scenario,
one sensor may observe a distorted full-bandwidth form of
the source signal, while the other observes the source undis-
torted but can only record or transmit a low bandwidth rep-
resentation of the signal.

For the general problem of signal estimation with side
information, we derive the maximum likelihood(ML), max-
imum a posterioriprobability (MAP), and minimum mean
squared error (MMSE) estimators. Since spectral shaping
parameters are often used to convey a succinct description
of speech, it is logical to consider them as side information.
We consider the use of linear prediction (LP) coefficients
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Figure 1: Signal recovery with side information

and zero-phase impulse response coefficients as side infor-
mation. For the case of LP coefficients as side information,
we provide a simple algorithm that yields a good approxi-
mation to the ML estimate. As an alternative, using zero-
phase impulse response coefficients as side information, we
develop an algorithm that gives the exact ML estimate.

The results in this paper can also be applied to the tra-
ditional problem of single-sensor signal enhancement with-
out side information. From the noisy signal, parameters of
the speech can potentially be estimated and used as con-
straints for the algorithms presented in this paper. We con-
sider such an approach in an experiment, as we determine
the maximum likelihood LP parameters from noisy speech,
and then, considering the speech as theunknown parameter,
use the approximate ML estimation algorithm with the LP
coefficients as side information.

2. MMSE AND MAP ESTIMATORS

The MMSE and MAP estimators are derived from thea pos-
teriori density function. Letx denote the zero-mean short-
time speech vector of lengthN and y = x + w denote
the noisy observation ofx, wherew � N (0; �2wI). Let
z = g(x) be the corresponding side information, which is
a deterministic function ofx. Note thaty andz are condi-
tionally independent givenx. The inverse image ofz is the
region in signal spaceS = fxjg(x) = zg. Thea posteriori
densityfxjy;z(XjY; Z), written in shorthand asf(XjY; Z),
is given by

f(XjY; Z) =
f(XjY )f(ZjX;Y )

f(ZjY )
(1)



=
f(XjY )f(ZjX)

f(ZjY )
(2)

=

�
f(XjY )
f(ZjY ) if X 2 S

0 otherwise.
(3)

Equation (2) follows from the fact thatz andy are condi-
tionally independent givenx. Equation (3) follows from the
fact that the side channel informationz is deterministically
related to the sourcex. Conditioned on a particular value of
x = X, z = g(x) with probability 1.

Note that thea posterioridensity in equation (3) is sim-
ilar to f(XjY ), thea posterioridensity without side infor-
mation. Given the two measurementsz = Z andy = Y ,
the denominator in equation (3) is a constant normaliza-
tion factor. To within the normalization factor, the density
f(XjY; Z) is identical tof(XjY ) inside the region of sup-
port described byg(X) = Z and zero otherwise. Given
this understanding, the nature of the two estimators is quite
clear.

The MMSE estimator is given bŷxMMSE = E[xjy; z].
The form of the estimator can be simplified using equa-
tion (3):

x̂MMSE = E[xjy; z] (4)

=

Z 1

�1

Xf(XjY; Z)dX (5)

=
1

f(ZjY )

Z
S

Xf(XjY )dX: (6)

The MMSE estimator is simply the centroid of the density
f(XjY ) in constraint regionS. Note that̂xMMSE is not in
general an element ofS. For the case whereS is convex, it
is clear that̂xMMSE 2 S.

The MAP estimator,̂xMAP , is the value ofx that max-
imizes the density in equation (3). The density is only non-
zero forg(X) = Z. Thus the MAP estimate is given by:

x̂MAP = argmax
x2S

f(XjY ): (7)

The estimator is the solution to a constrained optimization
problem. An example of a tractable problem is iff(XjY ) is
a Gaussian distribution andS is convex. The MAP estimate
is then a maximum of a concave function over a convex set,
which can be solved by a number of numerical algorithms.

3. ML ESTIMATOR

The ML signal estimate assumes no prior statistics for the
speech signal. The ML estimate of the speech segment is
theX that maximizes the following likelihood function:

f(Y; ZjX) = f(Y jZ;X)f(ZjX) (8)

= f(Y jX)f(ZjX) (9)

=
n
f(Y jX) if X 2 S
0 otherwise.

(10)
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Figure 2: MMSE, MAP, and ML estimates. The shaded re-
gion is the constraint regionS. The ellipses are the contours
of equal probability for the densityf(Xjy0), the maximum
of which is atE[xjy = y0].

The ML estimate is thus the result of maximizing the likeli-
hoodf(Y jX) over the constraint regionS.

For the case of additive white Gaussian noise, the points
of equal likelihood are equidistant from the meanx = y,
which implies that the ML estimate is the minimum distance
projection ofy onto the constraint setS:

x̂ML = argmin
x2S

NX
i=1

(xi � yi)
2; (11)

wherexi andyi are components of the vectorsx andy re-
spectively. In the frequency domain, the equation is written
as:

x̂ML = argmin
x2S

Z 2�

0

jX(ej!)� Y (ej!)j2d!: (12)

Figure 2 shows an example of the estimators for a two-
dimensional Gaussian random vectorx and a noisy realiza-
tion y = y0. The shaded region is the constraint regionS,
representing all signalsx meeting the constraints. The el-
lipses are the contours of equal probability for the density
f(XjY ), the maximum of which is atE[xjy = y0]. Note
thatx̂ML andx̂MAP are inS, while x̂MMSE is not.

3.1. LP coefficients as side information

Linear predictive coefficients provide an efficient represen-
tation of speech, and are therefore an appropriate choice of
side information for transmission through a low bit-rate side
channel. Let the side information describingS be the coeffi-
cientsf�i; i = 0; 1; :::;Mgof the LP filter of orderM . Be-
cause it is derived from values of the autocorrelation func-
tion of the clean speech, denotedx0, the side information
represents a constraint only on the Fourier transform mag-
nitude of the estimate.

We first show that if we impose no constraints on phase,
the minimum-distance element toy will have the same phase
asY (ej!). In equation 12 note that the integral is mini-
mized if the distance betweenX(ej!) andY (ej!) is min-
imized for all!. Consider a particular frequency! = !0,



and letX(ej!0 ) = jXjej� andY (ej!0) = jY jej�. The
squared distance betweenX(ej!0) andY (ej!0 ) is

J = jX(ej!0)� Y (ej!0)j2 (13)

= jXj2 + jY j2 � 2jXjjY j(cos(� � �)); (14)

which is minimized when� = �. Thus the minimum dis-
tance estimate will have the same phase as the noisy real-
ization.

Knowing that the estimate shares the same phase as the
noisy realization allows us to specify a new constraint set
S
0 = fx 2 S j 6 X(ej!) = 6 Y (ej!)g and to simplify the

expression in equation (12):

x̂ML = arg min
x2S0

Z 2�

0

jjX(ej!)j � jY (ej!)jj2d!: (15)

There is no clear solution to the constrained minimization
in equation (15). A simple solution results, however, if we
consider a slightly modified distance measure:

x̂ = arg min
x2S0

Z 2�

0

jjX(ej!)j2 � jY (ej!)j2j2d!: (16)

The time domain expression for equation (16) is

x̂ = arg min
x2S0

X
i

(Rx[i]�Ry[i])
2; (17)

whereRx andRy are the autocorrelation functions ofx and
y respectively. Given the one-to-one correspondence be-
tween the LP coefficientsf�i; i = 0; :::;MgandfRx[i]; i =
0; :::;Mg [5], the constraint setS0 onxmaps to a constraint
setSR onRx: SR = fRx j Rx[i] = Rx0[i]; i = 0; :::;Mg.
The estimate in equation (17) is therefore the one whose au-
tocorrelation function is the minimum-distance projection
of Ry ontoSR.

3.2. Projection onto convex sets

In this section we describe the minimum-distance projection
of Ry ontoSR using projection onto convex sets. The con-
straint setSR can be described as the intersection of three
convex sets. We define the sets on the Hilbert spacel2 of
finite-norm discrete sequences:

C1 = fu 2 l2 j u[i] = Rx0 [i]; i = �M; :::;Mg(18)

C2 = fu 2 l2 j U (ej!) real; positive 8!g (19)

C3 = fu 2 l2 j ju[i]j � Rx0 [0] 8ig: (20)

The setsC2 andC3 ensure that the signals are legitimate
autocorrelation functions. We denote the projection opera-
torsP1, P2, andP3 which perform the minimum-distance
projections onto the setsC1, C2, andC3 respectively.P2

is best described as an operation in frequency, whileP1 and
P3 are best described as operations in time:

P1u[n] =

�
Rx0 [n] n = �M; :::;M

u[n] otherwise
(21)

P2U (ej!) =

�
U (ej!) if U (ej!) > 0
0 otherwise

(22)

P3u[n] =

�
Rx0 [0] if u[n] > Rx0 [0]
u[n] otherwise.

(23)

Lettingu0 = Ry, the conventional projection onto con-
vex sets (POCS) algorithm is given by the iterationui+1 =
Pui, whereP = P1P2P3 . The sequencefuig1i=0 con-
verges to some point inSR [2]. In order to converge on the
minimum-distance projection ofRy ontoSR, the algorithm
must be modified [1]. Letu0 = Ry, and define the sequence
fuig

1
i=0 by

u1 = P1u0; v1 = u1 � u0
u2 = P2u1; v2 = u2 � u1
u3 = P3u2; v3 = u3 � u2
u4 = P1(u3 � v1); v4 = v1 + u4 � u3
u5 = P2(u4 � v2); v5 = v2 + u5 � u4
u6 = P3(u5 � v3); v6 = v3 + u6 � u5
u7 = P1(u6 � v4); v7 = v4 + u7 � u6
u8 = P2(u7 � v5); v8 = v5 + u8 � u7
u9 = P3(u8 � v6); v9 = v6 + u9 � u8

...
...

(24)

The sequencefuig1i=0 converges to the minimum-distance
projection ofRy onto SR. The Fourier transform of the
vectoru = limi!1ui is the squared magnitude response of
the desired estimate. The phase of the estimate is assigned
the phase ofy, which is justified above. This estimate is not
the ML estimate, however, because of the approximation
made in equation (16).

3.3. Zero-phase impulse response coefficients

Equation (15) indicates an exact ML solution subject to a
modification of the side information. The time domain ex-
pression for equation (15) is

x̂ = arg min
x2S0

X
i

(xzp[i]� yzp[i])
2; (25)

wherexzp andyzp are the zero-phase impulse responses of
x andy respectively. Let the side information befx0zp[i],
i = 0; :::;Mg, the firstM + 1 zero-phase impulse response
coefficients ofx0. The side information describes a con-
straint set onxzp: Szp = fxzp j xzp[i] = x0zp[i]; i =
0; :::;Mg. The setSzp is the intersection of the following
two convex sets onl2:

C1 = fu 2 l2 j u[i] = x0zp[i]; i = �M; :::;Mg(26)

C2 = fu 2 l2 j U (ej!) real; positive 8!g: (27)



The setC2 ensures that the sequences inSzp are legitimate
zero-phase impulse responses.

The ML estimate is calculated by means of a POCS al-
gorithm. The projection operatorsP1 andP2, which per-
form the minimum-distance projections onto the setsC1 and
C2 respectively, are given by

P1u[n] =

�
x0zp[n] n = �M; :::;M

u[n] otherwise
(28)

P2U (ej!) =

�
U (ej!) if U (ej!) > 0
0 otherwise

: (29)

To obtain the zero-phase response of the ML estimate, the
minimum-distance projection algorithm proceeds as in equa-
tion (24); the modification of equation (24) to accommodate
two instead of three convex sets is obvious. The phase of the
ML estimate is assigned the phase ofy, which is justified
above.

4. EXPERIMENTS AND RESULTS

We have implemented the algorithms presented in this pa-
per on speech and have conducted informal listening tests.
Enhancement experiments have been performed using spec-
tral envelope side information that is derived from the clean
speech. There are also preliminary results for single-sensor
enhancement with no side information, using LP coefficients
estimated from the noisy speech. In all experiments the
speech is sampled at10kHz, and the processing is done on
20ms frames with 50% overlap.

Using LP coefficients determined from the clean speech
as side information, we used the algorithm in section 3.2 to
enhance noisy speech at several SNRs. The number of coef-
ficients used was varied from 4 to 20. Relative to perceived
output quality, there are significantly diminished returns for
additional coefficients beyond 12. This is not surprising,
because the spectral shaping of most speech is captured by
a 12-pole model. The algorithm significantly improves in-
telligibility, even for very low SNRs (-10dB), and the en-
hanced speech is more perceptually pleasing than the noisy
speech. The algorithm functions at such low SNRs because
of the use of information from the clean speech. One neg-
ative aspect of the algorithm is that for low SNRs, there is
a slight harshness to the enhanced speech. At high SNRs
(>40dB), the enhanced speech is perceptually the same as
the noisy speech. For the purposes of comparison, we con-
sider speech enhanced by a Wiener filter, where the power
spectrum of the source is approximated by a 12-pole model
calculated from the clean speech. For all of the SNRs tested,
the approximate ML algorithm using 12 coefficients gives
perceptually better results. For the Wiener-filtered output
the noise is highly correlated to the speech, whereas for the
approximate ML algorithm output the correlation is less no-
ticeable.

The same experiments were performed using zero-phase
coefficients determined from the clean speech as side infor-
mation. For these experiments we used the algorithm in sec-
tion 3.3. Diminished returns in perceived quality occurs be-
yond 14 coefficients. The performance characteristics of the
algorithm are similar to the LP algorithm: improved intelli-
gibility at very low SNRs and no effect at high SNRs. The
enhanced speech has the same perceptual properties as the
speech from the LP algorithm, including a slight harshness
at low SNRs. The algorithm also outperforms the Wiener
filter described above.

The final experiment involves single-sensor noise reduc-
tion without side information. The LP coefficients are esti-
mated from the noisy speech using ML estimation [3, 4].
Now, considering the speech as theunknown parameter and
the LP coefficients as side information, we find an approxi-
mate ML estimate of the speech using the algorithm in sec-
tion 3.2. Preliminary results suggest that the approach has
promise.
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