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ABSTRACT

We are creating human machine interfaces which let peo-
ple communicate with machines using natural modalities
including speech and gesture. A problem with current mul-
timodal interfaces is that users are forced to learn the set
of words and gestures which the interface understands. We
report on a trainable interface which lets the user teach the
system words of their choice through natural multimodal
interactions.

1. PROBLEM

Most current human-machine interfaces which use natural
modalities such as speech and gesture force the user to learn
which words and gestures the system understands before
the system can be used (see [9], [10], or [4]; a notable excep-
tion is [2]). For example, an interface designer who wishes
to use speech input must choose the vocabulary which the
system will understand. If the user strays from this vocab-
ulary, the system will not respond correctly. The semantics
of the words must also be de�ned by the interface designer
but may also not match the expectations of the user [1].

In practice it is extremely di�cult to predict what vo-
cabulary a person will use in even the most restricted do-
mains [1]. As Zipf's law would predict, people's choice of
words varies widely making it nearly impossible for the in-
terface designer to determine which words an individual
user will choose. To compound the problem of predict-
ing vocabulary selection, the semantics of words also vary
across users. In some of their experiments, Furnas et. al.
found that users will sometimes use the same word to refer
to di�erent concepts even within highly limited domains [1].
These �ndings suggest that the vocabulary and associated
semantics used in an interface should not be hard wired by
the interface designer.

2. TRAINABLE INTERFACES

Our approach to this problem is to build trainable interfaces

which let the user teach the interface which words and ges-
tures she wants to use and what the words and gestures
mean. In this paper we focus on the problem of building a
trainable speech recognizer which lets the user de�ne both
the acoustic models and semantics of words they wish to
use. We note that our approach to trainable interfaces can
also be used for gestures and other non-speech modalities.

We have built a system which learns words from natural
interactions with the user. Users teach the system words by
pointing to objects and naming them. The system learns
acoustic models of words, and infers the semantics of the
words by observing the context in which they were heard.
For our initial experiments we are using a simple blocks
world. The user can refer to blocks using speech and diectic
gesture and teach the system words referring to shapes and
colors.

In order to learn the semantics of words a logical infer-
ence problem must be solved. For example the user might
point to the same object and say both \red" and \ball".
Over time the system must learn that the word \red" refers
to the color attribute of objects and not shape. In addi-
tion, the system must deal with noisy acoustic input, so
the logical inference must be solved in a statistical frame-
work which can account for noise. A statistical framework
is also useful since it can better cope with errors in training
data.

3. EMBODIMENT OF THE INTERFACE

We have embodied the interface as an animated character
called Toco the Toucan shown in Figure 1. He can move
his head to look at any location in 3-D space. His eyes
can blink and squint, his beak can open, close and smile,
and his eyebrows can be raised, lowered, and tilted. Toco
is currently situated in a world populated with blocks with
di�erent colors and shapes.

Toco's face and body language may be used as an output
display to convey the system's internal state. For example
his direction of gaze gives the person immediate feedback of
where Toco thinks the user is pointing. Subtle facial cues
such as widening of eyes and raised eyebrows are used to
signal when Toco is alert and attending to the user. Con-
�dence levels for speech or gesture recognition can also be
displayed by showing confusion in Toco's face, or a knowing
nod for a clearly understood command.

For output speech generation, we are using a commer-
cial concatenative phonetic speech synthesizer. The syn-
thesizer is driven using phoneme strings which have been
learned from listening to users' speech as described later in
this paper.



Figure 1: A screen shot of Toco the Toucan looking at a
white cube in the virtual environment

4. A MULTIMODAL SENSORY
ENVIRONMENT

We have created an environment to facilitate development
of multimodal adaptive interfaces based on the smart desk
environment [5]. In its current con�guration, the user sits
at a desk facing a 70" color projection screen which displays
Toco and virtual objects. Toco can sense three types of in-
put: the user's gestures, the user's speech, and information
about the objects which currently exist in Toco's virtual
environment.

4.1. Gesture Tracking

A vision-based gesture tracking system uses two color video
cameras to sense the person's hand gestures. One camera
is mounted directly overhead and the second provides an
orthogonal view from the right side. A Gaussian mixture
model of skin color is used to locate and track the user's
hand at 30 Hz. The 3-D hand position is estimated by
combining estimates from both cameras. For details of the
gesture tracking system see [8].

4.2. Speech Analysis using Real-time Phoneme Recog-

nition

Audio is sampled at 16-bit 16 kHz from a head mounted mi-
crophone and processed using the Relative Spectral (RASTA)
algorithm [3]. The RASTA coe�cients are computed on
20ms windows of audio (recomputed every 10ms) and fed
into a recurrent neural network (RNN) similar to the sys-
tem described in [6] to produce a 40-dimensional phoneme
probability estimate (39 phonemes and silence) at a rate of
100Hz. The RNN has been trained using back propagation
in time on the TIMIT database. A �nite state machine
is used to detect and segment speech events (de�ned to be
spoken utterances surrounded by silence) using the silence
estimate from the RNN [8].

The RNN outputs are treated as emission probabilities
within a Hidden Markov Model (HMM) framework. Du-

ration models and bigram phoneme transition probabilities
for a all-phoneme loop HMM have been computed from the
TIMIT training data set. The system currently recognizes
phonemes with 68% accuracy on the standard speaker in-
dependent TIMIT recognition task. Given a speech event,
Viterbi search can be used within the HMM framework to
�nd the most likely phoneme sequence.

We now de�ne a distance metric for comparing a speech
event to a reference phoneme string. This distance metric
is used for clustering speech events (see Section 5.1). The
reference phoneme string may be thought of as a HMM.
We can compute a con�dence measure that an event was
generated by the HMM following methods developed for
keyword spotting con�dence measures [7] as follows.

First we compute the log probability of an event e using
a forced Viterbi alignment with phoneme transitions deter-
mined by the reference phoneme string. We denote this as
log(p(reference j e)).

Next we compute the log probability of the event e using
a Viterbi search with a phoneme loop model with phoneme
bigram transition probabilities estimated from the original
TIMIT data. We denote this as log(p(phonemeloop j e)).

Finally, we can de�ne the normalized distance between
the event and the reference string to be:

d(ref; e) = log(p(ref j e))� log(p(phonemeloop j e)) (1)

We have found that this measure works well for both
keyword spotting (Toco only responds to users after hearing
his name) and for clustering acoustic data (see Section 5.1).

4.3. Synthetic Sensing of Virtual Objects

The third type of input in the multimodal environment lets
Toco directly \sense" attributes of virtual objects which are
displayed in Toco's graphical world (for example the blocks
in Figure 1). Each object is represented by a set of attribute
vectors which encode characteristics of the object. For ex-
ample the white cube in the top right corner of Figure 1 is
represented as:

Object {
r,g,b = 1.0 , 1.0 , 1.0
shape = 0, 0, 1, 0

}

We use the following notation to represent an element
of an attribute vector set:

a
i
j(k); i = 1; 2 : : : n; j = 1; 2 : : :mi (2)

where aij is the jth element of the ith attribute vector rep-

resenting the kth object, there are n vectors in an attribute
set, and the ith vector has mi elements. Thus for example
the attribute vector set for the white cube described above
has n = 2, m1 = 3, m2 = 4 and a23 = 1. The shape vec-
tor discretely encodes shapes in a four-bit binary vector 1

(cone, sphere, cube, cylinder). The purpose for represent-
ing objects as attribute vectors is to facilitate learning of

1We are currently changing the representation to encode con-

tinuous valued attributes so that more complex attribute spaces
may be modeled.



word meanings in terms of these attribute primitives. If all
perceptually salient attributes of the objects are encoded in
the attributes, Toco will be able to discover the meaning of
words grounded in these perceptual primitives.

5. LEARNING AND RESPONDING TO

SPOKEN WORDS

5.1. Learning Words

Words must be learned at two levels: their acoustic models,
and their association with object attribute vectors. Ges-
ture input from the user provides contextual information
for learning attribute associations.

Toco's memory consists of a set of phoneme string clus-
ters. Each cluster is comprised of a set of one or more
phoneme strings, and an association weight vector:

w
i
j(l); i = 1; 2 : : : n; j = 1; 2 : : : mi (3)

where wi
j(l) is the j

th element of the ith weight vector of the

lth word cluster, and n and mi are as de�ned in Equation 2.
We set the weight vectors of cluster l to the mutual

information between the observation of word cluster l and
each attribute vector:

w
i
j(l) = log

�
p(aij j Vl)

p(aij)

�
(4)

where Vl signi�es that a phoneme string from cluster l was
heard. The probabilities of both conditioned and uncon-
ditioned attribute vector values are updated using the at-
tributes of the objects which the user points to while speak-
ing training words. Since the elements of the attributes are
binary variables, we are able to use simple smoothed rela-
tive frequencies to estimate the probabilities in Equation 4
[2].

When Toco �rst starts running, he has no clusters in
memory. When the user �rst points to an object and ut-
ters a word, Toco will create a cluster and initialize it with
the phoneme string extracted from the user's speech. The
association weight vector for this cluster is then set using
Equation 4. Subsequent training examples (i.e. where the
user is pointing to an object as she says a word) are in-
corporated into Toco's associative memory by the following
steps.

First we need to de�ne the distance from a speech event
to a word cluster. We denote the gth phoneme string of
cluster Vl as s

l
g. The distance from cluster Vl to event e is

de�ned as the distance between the event and the closest
phoneme string within the cluster:

dcluster(Vl; e) = ming d(slg; e) (5)

where d() is de�ned in Equation 1.
Using Equation 5 the index of the cluster closest to the

speech event is found:

lbest = arg minl d(Vl; e) (6)

and the distance from the event e to the closest cluster is:

dist = dcluster(Vlbest ; e) (7)

Figure 2: Examples of words learned from the blocks world
task. The squares show association weight values. The size
of the square indicates its magnitude; white color indicates
a positive value and black indicates a negative value. The
left three weight columns correspond to color (R-G-B) and
the remaining four columns correspond to shape (cube-ball-
cone-cylinder). Each row of weights represents a phoneme
string cluster with the associated phoneme strings listed
on the right. From the top, the words shown are \ball",
\cylinder", \red", \green" and \blue". There are currently
some systematic segmentation problems which cause clip-
ping of word beginnings and endings. We plan to modify
the segmentation algorithm parameters to correct this.

At this point the algorithm compares dist to a pre-
de�ned split/merge threshold. If dist is greater than the
threshold, a new cluster is formed and initialized with the
phoneme string extracted from the event e. If dist is less
than the threshold, the phoneme string extracted from the
event e is added to the cluster Vlbest , e�ectively merging the
acoustic model of the new event with the existing acoustic
models of the cluster. After the clusters are updated (by
either a merge or split), the weights of the phoneme string
clusters are updated according to Equation 4.

Figure 2 shows some of the phoneme string clusters
which were learned using this method over the course of
a two minute interaction with a user.

5.2. Responding to Words

Toco can respond to words based on the phoneme string
clusters which have been formed from previous interactions
with the user. When the user says a word without pointing
to the object, Toco �nds the closest cluster to the speech
event using Equation 6. We refer to this as the activated

phoneme string cluster. The distance to this activated clus-
ter is calculated using Equation 7. This distance is then
compared to a �xed response threshold which determines
whether Toco will respond to the event. If the distance is
greater than the threshold, Toco treats the event as un-
known and takes no action.

If the distance is less than the threshold, Toco �nds the
object in view which has highest association with the acti-
vated cluster (see below) and responds by looking towards
that object and vocalizing.

5.2.1. Selecting an Object During Word Response

The object is selected by computing the association strength
between each object and the activated cluster and selecting
the object with the highest association. The association
between an object k and cluster Vl is computed as:



y
l
k = maxi

Pmi

j=1
aij(k)w

i
j(l)

mi

; i = 1 : : : n (8)

The max operator in Equation 8 implements a compe-
tition among attribute vectors within the vector set. The
dot product of association weights for the cluster and the
associated attribute vector is computed for each vector in
the set and normalized by mi, the dimensionality of the
ith attribute vector. The association of the cluster to the
object is set to the highest normalized vector association.

5.2.2. Generating a Spoken Response

To produce a vocalization the system inverts the process
encoded in Equation 8 and �nds the phoneme string clus-
ter most strongly associated with the selected object, using
the attribute vector which produces the highest dimension-
normalized score in the forward application of Equation 8.

A spoken response is generated by choosing a represen-
tative phoneme string from the selected cluster and sending
it to the phoneme synthesizer. This method of spoken re-
sponse provides a feedback mechanism for Toco's semantic
associations. Inconsistencies in Toco's semantic network are
exposed when he tries to echo the user's speech but says an
incorrect word. When such an error occurs, the user will
immediately know that Toco has not yet learned the proper
meaning of the word. When robust acoustic and semantic
models have been learned, Toco consistently \parrots" the
user's speech. In the blocks world task empirical tests show
that approximately 15 to 20 training words are required to
teach 4 colors, and 30 to 40 training words are required to
teach 8 colors and shapes.

5.3. An Application: Vocabulary Translation

An application of the current system is in translating words
between di�erent languages. We have added a mode to the
system in which Toco recognizes words using one set of
acoustic and semantic weights, and generates output us-
ing a second set. If Toco is taught words in two di�erent
languages, he can then respond to words spoken in one lan-
guage with synthetic speech in a second language. The
mapping between words is de�ned by the semantic associ-
ations of the words in each language which are grounded
in the common object attributes. A related application of
this idea is as a communication aid for disabled users with
dysarthric (unintelligible) speech. If the user can produce
consistent vocalizations, the system can be taught to trans-
late them into clear synthetic speech.

6. SUMMARY AND FUTURE WORK

We have presented results of our initial experiments on word
learning in a multimodal environment. Our system demon-
strates an interface which learns words and their domain-
limited semantics through natural multimodal interactions
with people. Toco can learn acoustic words and their mean-
ings by continuously updating association weight vectors
which estimate the mutual information between acoustic
words and attribute vectors which represent perceptually
salient aspects of virtual objects in Toco's world. Toco is

able to learn semantic associations (between words and at-
tribute vectors) using gestural input from the user. Gesture
input enables the user to naturally specify which object to
attend to during word learning.

We are in the process of de�ning a new task which
involves learning spoken directions for spatial navigation.
Spatial relations will be encoded in the attribute vectors of
virtual objects facilitating the learning of words referring to
spatial concepts (for example \left", \right", \near", \far"
etc.).

In addition to de�ning a new task domain, we are plan-
ning several technical extensions of the system including
the addition of a direct manipulation interface for demon-
strating actions so that Toco can learn verbs, and simple
grammar learning capabilities which can be used for both
speech recognition and generation.
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