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Abstract

A linear least squares smoothing approach is proposed for

the blind channel estimation. It is shown that the single-

input multiple-output moving average process has the prop-

erty that the error sequence of the least squares smoother,

under certain conditions, uniquely determines the channel

impulse response. The relationship among the dimension

of the observation space, channel order and smoothing de-

lay is presented. A new algorithm for channel estimation

based on the least squares smoothing is developed. The pro-

posed approach has the �nite-sample convergence property

in the absence of the channel noise. It also has a structure

suitable for recursive implementations.

1. INTRODUCTION

One of the most important requirements for blind channel

estimation and equalization is the speed of convergence.

This is especially the case when it is used in packet trans-

mission systems. Among blind channel estimation tech-

niques developed recently [8], those based on the so-called

deterministic models have clear advantage in the speed of

convergence. Without assuming speci�c stochastic mod-

els of the input sequence, these \deterministic" techniques

are capable of obtaining perfect channel estimation within

a �nite number of samples in the absence of noise. Such a

�nite-sample convergence property comes mainly from the

multichannel structure �rst exploited in [9]. Existing al-

gorithms with this attractive feature include the subspace

algorithm (SS) [5], the least squares (LS) algorithm [11],

and the two-step maximum likelihood (TSML) approach

[4].

Perhaps equally important in blind channel equalization

are the adaptivity and the simplicity of the implemen-

tation. Unfortunately, most existing deterministic algo-

rithms are developed for batch processing and their adap-

tive implementations are often cumbersome. In this re-

gard, stochastic algorithms [6, 1, 3] based on the linear

prediction (LP) interpretation of the multichannel model,
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originally exploited by Slock [6], have the potential of hav-

ing e�ective adaptive realization. While not derived from

the LP framework, the outer product decomposition algo-

rithm (OPDA) [2] is closely related to the multistep pre-

diction (MSP) approach of Gesbert and Duhamel [3] for

they have the same identi�cation equation.

The contribution of this paper is twofold. First, we

present a linear smoothing interpretation of the multichan-

nel moving average processes. While similar in spirit to

the LP approach, the linear smoothing framework, �rst

proposed in [12], allows the deterministic formulation of

the problem whereas the assumption of uncorrelated input

sequence is crucial in the LP framework. Key properties

of the optimal linear smoothing are presented. Second, a

least squares smoothing approach is developed that has the

�nite-sample convergence property in the absence of noise.

The proposed algorithm performs better than stochastic

methods and is comparable with other deterministic ap-

proaches. Using orthogonal projections, the proposed ap-

proach is well suited for both order- and time-recursive

implementations.

2. THE MODEL

Considered in this paper is the single input P -output linear

channel model given by

xt =

LX
i=0

hist�i; yt = xt + nt; t = 1; � � � ;N; (1)

where xt is the channel output, yt is the received signal,

fhtg is the channel impulse response, st is the input se-

quence. The matrix representation of the above channel

is obtained by considering the vector of W samples of the

observation yW (t)
�
= [ytt; � � � ;y

t
t�W+1]

t. With xW (t) and

nW (t) similarly de�ned, we have

xW (t) = FW (h)s(t); yW (t) = xW (t) + nW (t); (2)



where FW (h) 2 CWP�(L+W ) is the �ltering matrix

FW (h)
�
=

0
@h0 � � � hL

. . . � � �
. . .

h0 � � � hL

1
A = [f1; � � � fW+L]

(3)

We shall make the following assumptions:

A1 FW (h) has full column rank for W � L+ 1.

A2 fskg has the linear complexity� greater than 6L, i.e.,

rank

0
@ s5L+1 � � � sN

... Toeplitz

s�L

1
A = 6L + 1

Remarks: The requirement of linear complexity is stronger

than necessary. It is shown in [7] that the necessary and

su�cient condition is 2L+ 1 when P = 2.

3. THE LEAST SQUARES SMOOTHING

3.1. A Special Case

To demonstrate the basic ideas of using linear smoothing

for channel estimation, we consider a simple example with

L = 2 and W = L+ 1. Here we assume �rst the channel

order is known and there is no noise. From (2), we have

x3(t) =

0
B@
h0 h1 h2

h0 h1 h2

h0 h1 h2

1
CA
0
BBB@

st

st�1

st�2

st�3

st�4

1
CCCA (4)

Under (A1), there exist g and b such that

st = g
H
x(t) = b

H
x(t+ 4): (5)

Substituting the above into (4), we have, 8t,

x3(t) = hst�2 +A1

0
@xt+4

...

xt+1

1
A+A2

0
@ xt�3

...

xt�6

1
A

= hst�2 +Az(t); (6)

where A is a constant matrix and z(t) contains future and

past data. Collecting all data samples, we have

X = AZ+ E; (7)

where E
�
= h[s5; � � � sN�6],

X =

0
@ x7 � � � xN�4

... Block

x5 Toeplitz

1
A ;Z

�
=

0
BBBBBBBB@

x11 � � � xN
... Block

x8 Toeplitz

x4 � � � xN�5
... Block

x1 Toeplitz

1
CCCCCCCCA

:

(8)

�The linear complexity of sequence fskgnk=1 is de�ned as the

smallest value of c for which si = �
Pc

j=1
�jsi�j ; i = c; � � � ; n:

The key observation is that both X and Z are made of

received data, and the rank 1 matrix E has column space

spanned by the channel vector h. If E can be computed

from X and Z, then h can be easily obtained. This is pos-

sible when E is orthogonal to Z, in which case E is the

least squares estimation error of X by Z. The orthogonal

property is immediate in the stochastic models when the

input sequence is uncorrelated. In the deterministic frame-

work, such an orthogonal property unfortunately does not

hold for E, which underscores the di�erence between the

two approaches.

3.2. The General Formulation

We present next the general formulation of the smoothing

approach. Speci�cally, we consider the smoothing estimate

of xW(t) using zd(t)
�
=

�
z
f

d(t;d)

z
p

d(t;d)

�
where the future and

past observations are contained, respectively, in

z
f

d(t)
�
=

0
@ xt+d+W�1

...

xt+1

1
A ;z

p

d(t)
�
=

0
@ xt�d�1

...

xt�d�2W+2

1
A : (9)

Following the special case described above, de�ne

X
�
= [xW (d+ 2W � 1); � � � ;xW (N � d�W + 1)]

=

0
@xd+2W�1 � � � xN�d�W+1

... Block

xd+W�1 Toeplitz

1
A ; (10)

Zd
�
= [zd(d+ 2W � 1); � � � ; zd(N � d�W + 1)] (11)

=

0
BBBBBBBB@

x2d+3W�2 � � � xN

.

.. Block

xd+2W Toeplitz

x2W�2 � � � xN�2d�W

... Block

x1 Toeplitz

1
CCCCCCCCA

; (12)

Ed
�
=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0 d < L

0
BBBBBB@

hL

...
. . .

h0 hL

. . .
...

h0

1
CCCCCCA

| {z }
HL;d(h)2C

PW�(d�L+1)

Sd L � d � W � 1
(13)

Sd
�
=

0
@ sd+2W�L�1 � � � sN�d�W�L+1

... Toeplitz

s2W�1

1
A (14)



We now present the main result in the least squares

smoothing of xW (t).

Theorem 1 Under assumptions (A1-A2) with X, Zd and

Ed de�ned in (10-13), there exists a matrix A such that

X = Ed +AZd; (15)

with the following properties:

1. orthogonal projection:

rang(P?Zd
X) = rang(Ed); (16)

2. the rank condition:

rankfZdg =

�
3W + L+ 2d � 2 d < L

3W + 2L+ d � 3 L � d �W � 1

(17)

Remarks:

� The orthogonal projection condition implies that the

range space of Ed is uniquely determined from the

observation. This is illustrated in Figures 1. Further,

if d � L, then matrix P?Zd
X uniquely determines h.

� If L is known and d = L, as in the special case dis-

cussed earlier, P?Zd
X is a rank-one matrix and h cor-

respond to the �rst left singular vector.

� When L is unknown but its upper bound is known,

then we can choose d � L and �nd the best �t in the

least squares sense between the range space of Ed and

HL;d(h). Otherwise, it is more attractive to recur-

sively (in d) evaluate the error until it exceeds certain

threshold. Notice the structure of Zd where only the

block corresponding to the future data varies with d.

By applying QR decomposition recursively, an order

recursion scheme can be easily implemented. Details

of these operations can be found in [10].

� The rank condition in (17) is useful in two ways. First,

it can be used to determine the dimension of Row(Zd).

With Zd singular in general, the rank condition is es-

pecially useful in determining Row(Zd) in the pres-

ence of noise. Second, the rank of Zd increases with d

by 2 when d < L and by 1 once d � L. This property

can be used in order-recursive implementation.

X

P?Zd
XspanffL; � � � ; fdg

X̂LS = AZd
RowfZdg RowfZdg

X

Figure 1: The least squares smoothing. Left:

d � L. Right: d < L.

3.3. The Algorithm

So far we have not considered the e�ect of channel noise.

To develop a practical channel estimator, noise must be

compensated. Let X and Zd be perturbed to Y and ~Zd,

respectively. In light of the rank condition in (17), the

e�ect of noise can be minimized by using the least squares

estimate of Z via the following optimization

Ẑd = arg min
rank(Z)=r

jjZ� ~Zjj22 (18)

where r is obtained from (17). The solution of this op-

timization can be obtained from SVD. Projecting Y onto

Ẑd, the rank-one approximation of the projection gives the

channel estimate. The following algorithm implements this

approach.

The LSS Algorithm

1. Form Y, and ~Zd.

2. Obtain the orthogonal basis Q that spans the row

space of Ẑd.

3. Compute

~Ed = Y �YQ
H
Q

SVD
= UEDEV

H
E : (19)

4. ĥ =UE(:; 1)

Remarks:

� One of the attractive features of this algorithm is that

both order and time recursive implementation is pos-

sible [13].

� The above algorithm also provides possibility of direct

symbol recovery from Ed.

� An alternative implementation that requires less stor-

age can be derived by replacing (19) using the sample

covariance of Y, ~Zd and ~Ed. Although such an im-

plementation resembles the (stochastic) mean square

error smoothing (MSS) approach in [12], the LSS and

MSS are fundamentally di�erent in that the latter re-

quires uncorrelated input sequence. The covariance

structure from the statistical properties of the input

sequence is exploited in [12] whereas no such structure

should be imposed in the least squares formulation.

4. SIMULATION

To evaluate the performance of the proposed algorithm, we

compared LSS with several existing deterministic schemes

including the least squares algorithms [11], the subspace

algorithm [5] and TSML [4]. We have also compared with

recent stochastic methods based on multistep linear pre-

diction (MSP) [3] and smoothing [12]. The performance

of these algorithms is measured by their estimated mean



squared error of the normalized channel (jjhjj= 1)

^MSE
�
=

1

M

X
i

jjh� ĥ(i)jj2: (20)

The signal-to-noise ratio (SNR) is de�ned by SNR =

10 log 10
jjhjj2�2s
P�2n

.

Figure 2 shows the MSE performance vs. SNR. All de-

terministic methods are comparable in this case and they

all approach the Cram�er-Rao bound at high SNR. Compar-

ing with statistical approaches, it is clear that deterministic

approaches are e�cient at high SNR. In contrast, statis-

tical methods are limited by the number of samples used

in the covariance estimation, which explains the \
ooring"

e�ect when SNR!1.
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Figure 2: Channel in [4]: �:LSS, +:LS/SS,

�:TSML. �: MSS, o: MSP. 50

Monte Carlo Runs. 100 input

symbols
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