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ABSTRACT

In this paper, we determine the optimal pulse shape for
estimating positions of superimposed pulses by deriv-
ing the Cramer-Rao lower bound (CRLB) on the av-
erage estimation error variance and optimizing it with
respect to pulse shape. Our results show that a sig-
ni�cant improvement in estimation error variance can
be achieved relative to Gaussian and rectangular pulse
shapes.

1. INTRODUCTION

We consider the problem of estimating pulse positions
within a train of superimposed pulses. We formulate
the measurement of each individual pulse position as
a multi-dimensional least-squares estimation problem,
and determine the pulse shape that minimizes the
Cramer-Rao lower bound (CRLB) for the average esti-
mation error variance. Our result can be used in appli-
cations such as magnetic resonance (MR) cardiac tag-
ging [1] and pulse-position modulation (PPM) [2] where
a signal is encoded by the pulse displacement from a
speci�ed position reference. Atalar and McVeigh [3]
addressed a similar problem in the context of MR tag-
ging where the position estimation of a single pulse
is considered. In particular, the optimal pulse thick-
ness was determined for several typical pulse shapes.
Here we extend this problem to multiple superimposed
pulses. Speci�cally, we derive an analytical expression
for the CRLB of the average estimation error. We then
simplify this expression for the case of equally spaced
pulses. The optimal pulse shape is found by optimizing
this bound over the class of bandlimited pulses with an
upper bound on the pulse energy.
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This paper is organized as follows. In Section 2, we
derive the CR bound matrix. The analytical derivation
for the CRLB is then given in Section 3. In Section 4,
we optimize the CRLB numerically and present some
simulation results for both the case of equally and non-
equally spaced pulses. Conclusions and directions for
future work are presented in Section 5.

2. PRELIMINARIES

2.1. Notation

We denote a 1-D individual pulse function by s(x),
where x is the independent variable which could be
time or spatial position. We assume that the pulse
has passed through a physical system with �nite band-
width (e.g., a communication channel). For the case
of a pulse sequence, the superimposed pulse signal is
given by

y(x) =

MX
i=1

s(x� �i) (1)

where �i; i = 1; : : : ;M , denotes the position of each
individual pulse center.

In order to simplify the subsequent analytical devel-
opment, we introduce vector notation as follows. Given
the pulse positions �� = [�1; �2; : : : ; �M ] and the sam-
pling locations x = [x1; x2; : : : ; xN ], the uncorrupted
samples will be represented by a vector y(x; ��) whose
elements are given by

yn = y(xn; ��) =

MX
i=1

s(xn � �i): (2)

Similarly, the observed data samples are collected into
a vector ~y(x; ��). Our observation model is given by
~y(x; ��) = y(x; ��) + n(x), where n(x) denotes a Gaus-
sian noise vector with zero mean and known correlation



matrix � which is uncorrelated with the uncorrupted
signal y(x; ��).

2.2. The CR Bound Matrix

In the following we derive the CR bound matrix for the
problem of estimating pulse positions within a super-
imposed pulse sequence given in (1). Given the pulse
positions �� and the sampling locations x, the Fisher
information matrix � is given as follows:

� = E

(�
@ ln f(~yjx; ��)

@��

��
@ ln f(~yjx; ��)

@��

�T)
(3)

where

f(~yjx; ��) =
1

(2�)N=2j det�j1=2
exp[�

1

2
(~y�y)��1(~y�y)T ]

(4)
and Ef�g denotes the expectation operator. The CR
bound matrix for the estimation error covariance is
given by ��1.

After simple mathematical manipulations, the in-
formation matrix can be reduced into the following con-
venient form:

� =

�
@y

@��

�T
��1

�
@y

@��

�
(5)

where
h
@y
@��

i
is an N �M matrix, and ��1 is an N �N

matrix. Taking into account (2), the ijth element of �
is given by

�ij =

�
@

@�i
s(xn � �i)

�T
��1

�
@

@�j
s(xn � �j)

�
(6)

where n = 1; : : : ; N . If we diagonalize and normalize
the noise covariance matrix � (i.e., whitening the ob-
served data by an appropriate transformation), �ij is
further reduced to

�ij =
1

�2n

�
@

@�i
s(xn � �i)

�T �
@

@�j
s(xn � �j)

�
(7)

where �2n is the noise variance, and s(x) now denotes
the transformed version of the original individual pulse.
We will use this notation for the transformed pulse
shape hereafter.

3. AVERAGE ESTIMATION ERROR VARIANCE

3.1. Analytical Development

In this section, we derive an analytical expression for
the CRLB on the average estimation error. We assume

an in�nite number of pulses (M ! 1) and data sam-
ples (N !1). We also assume that the pulse positions
f�i; i = 1; : : : ;Mg are equally spaced with spacing D.
Furthermore, we are only concerned with the bandlim-
ited pulses as mentioned above. Let �x denote the crit-
ical sampling associated with the bandlimited pulse by
which we sample the signal. The CRLB on the average
estimation error variance is de�ned as follows:

��2CR = lim
M!1

1

M
tr[��1]

= lim
M!1

1

M

MX
i=1

�i

= lim
M!1

1

M

MX
i=1

1

�i
(8)

where �i and �i; i = 1; : : : ;M , are the eigenvalues of
the information matrix � and its inverse, respectively.

To derive an expression for tr[��1], we �rst show
that � is a Toeplitz matrix. De�ne the autocorrelation
function r(d) of the derivative pulse function s0(x) as

r(d) =

Z
1

�1

s0(x)s0(x � d)dx (9)

where s0(x) = ds=dx. Similarly, de�ne the autocorrela-
tion sequence �[k] of the same process given its samples
as

�[k] =

1X
n=�1

s0(xn)s
0(xn � kD): (10)

From the sampling theorem, we have the relationship
�[k] = 1

�xr(kD) for any bandlimited pulse function.
We can then express (7) in terms of (9) and (10) as
follows: �ij =

1

�2
n

�[i� j] = 1

�2
n

r((i� j)D). As a result,

we have shown that for the limiting case of an in�nite
number of equally spaced pulses and data samples, �
is a symmetric Toeplitz matrix. This is true assuming
that there is no aliasing.

By applying the Eigenvalue Distribution Theorem
[4] to (8), the CRLB is given by

��2CR =
1

2�

Z �

��

�2n
�(!)

d! (11)

where ! denotes the discrete-space frequency variable,
and �(!) represents the Fourier transform of the auto-
correlation sequence �[k] de�ned in (10).

We now relate �(!) to the Fourier transform of the
continuous pulse shape S(
), where 
 is the continuous-
space frequency variable. De�ne the autocorrelation se-
quence ~�[l] computed using samples with critical spac-
ing �x as follows:

~�[l] =
1X
�1

s0(xn)s
0(xn � l�x) (12)



Note that �[k] = ~�[k D
�x ], i.e., �[k] can be expressed

as a downsampled version of ~�[l]. For convenience we
assume that D is an integral multiple of �x. Taking
the Fourier transform on both sides of (12) we have

~�(!) =
1

�x

1X
n=�1

(
! � 2�n

�x
)2
����S(! � 2�n

�x
)

����
2

: (13)

Note the e�ect of the derivative operator on the Fourier
transform of s0(x). Now taking into account the down-
sampling operation, �(!) is given by

�(!) =
1

D

1X
n=�1

(
! � 2�n

D
)2
����S(! � 2�n

D
)

����
2

: (14)

By substituting the previous result for �(!) into (11),
the �nal result for the CRLB on the average estimation
error variance is given by the following:

��2CR =
1

2�

Z �

��

D�x�2nP
1

n=�1(!�2�nD )2
��S(!�2�nD )

��2 d!
(15)

Note that the CRLB is well-de�ned if and only if the
denominator of the integral in (15) does not vanish for
any frequency between �� and �.

Several important observations can be made from
the analytical expression for the CRLB derived above.
First, we should note that given a bandlimited pulse,
the pulse spacing must be greater than 2 critical sam-
ples; otherwise the sum in the denominator of the in-
tegral in (15) will become zero at some frequencies.

In [3], Atalar and McVeigh had derived the CR
bound for the problem of estimating a single pulse po-
sition. It can be shown that the optimal pulse function
for this bound is a sinusoid with frequency equal to
the system bandwidth. However, this pulse function
does not work for the multiple pulse position problem
because S(!) would be a delta function, which makes
the denominator of the integral in (15) become zero at
certain frequencies. Intuitively the sinusoid fails in the
multiple-pulse case because a sum of shifted sinusoids
is also a sinusoid, and the individual pulses cannot be
resolved.

Finally, one can show that the multiple-pulse CRLB
in (15) reduces to the single pulse CR bound derived
in [3], as the pulse spacing D approaches in�nity.

3.2. Pulse Shape Optimization

We de�ne the optimal pulse shape s�(x) as the s(x)
that minimizes the CRLB derived in (15) subject to
the energy and bandwidth constraint for a given pulse
spacing D. The energy constraint is needed to keep the
CRLB from going to zero during optimization. The

�nite bandwidth constraint is reasonable in practice
and is already assumed in deriving the CRLB in (15).

4. EXPERIMENTS

We demonstrate our method by numerically optimizing
the CRLB for the case D = 4 critical samples. The
optimization is done in the discrete frequency domain
for 64 samples. The optimal pulse function and its
DFT are given in Figures 1 and 2, respectively.

In order to verify our result, we generated a sig-
nal of 21 superimposed pulses spaced D = 4 samples
apart, and convolved each pulse with a sinc function to
simulate the �nite bandwidth constraint. White Gaus-
sian noise was added to the signal and the pulse po-
sitions were estimated using a non-linear least-squares
�t. The estimation error averaged over 250 trials along
with the CRLB is plotted in Figure 3. Also shown are
the results of the same experiment using rectangular
(1.5 samples wide) and Gaussian (1.2 samples wide)
pulse shapes. The optimal thicknesses of the rectangu-
lar and Gaussian pulses were computed by minimizing
(15) over pulse thickness. The amplitudes of the rect-
angular and Gaussian pulses were adjusted so that the
pulses have an energy of 1. Our result shows that the
optimal pulse function gives a better performance rel-
ative to rectangular and Gaussian pulses, particularly
at low SNR. This is because it focuses the pulse energy
in the available system bandwidth. More importantly,
it concentrates the energy in those frequencies that are
relevant to the estimation problem, which also results
in increased bandwidth e�ciency.

Finally, we performed computer experiments in or-
der to investigate the performance when the assump-
tion of even pulse spacing does not hold. This was
done by displacing an equally spaced pulse sequence
of 21 pulses (D = 4 critical samples) with a random
signal uniformly distributed with known maximum dis-
placement, and computing the average estimation error
variance after 250 trials. The SNR was �xed at 25 dB.
The result as a function of the maximum displacement
of the random shift can be seen in Figure 4. Our result
shows that the optimal pulse function still gives better
results compared to rectangular and Gaussian pulses,
even when the equal spacing assumption is violated.

5. CONCLUSIONS

In this paper we have derived the CRLB on the av-
erage estimation error variance in measuring positions
of equally spaced pulses in a pulse sequence. We have
shown that in order to keep the bound well-de�ned,
the spacing must be larger than 2 critical samples. By



optimizing the CRLB numerically we have been able
to �nd the theoretical optimal pulse shape for a given
pulse spacing. We note that other constraints such as a
maximum amplitude or nonnegativity constraint could
also be used in the optimization if desired. Simula-
tion results have con�rmed that the optimal pulse func-
tion gives a better performance relative to rectangular
and Gaussian pulses, even for perturbations from equal
spacing. One characteristic of our optimal pulse shape
is that because it is well localized in frequency, it is
not localized in space. In our future work we plan to
add a spatial localization constraint in the optimization
and develop other shift models that incorporate prior
knowledge of the pulse displacements.
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Figure 1: Optimal pulse function
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Figure 2: Fourier transform of optimal pulse function
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Figure 3: Average deviation of the estimation error vs
SNR.
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Figure 4: Average deviation of the estimation error vs
maximum displacement .


