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ABSTRACT

Some signal reconstruction problems allow for exibil-
ity in the selection of observations and hence the sig-
nal formation equation. In such cases, we have the
opportunity to determine the best combination of ob-
servations before acquiring the data. We analyze the
computational complexity of various forms of sequen-
tial backward selection (SBS) to select observations. In
light of this analysis, we present a computationally im-
proved algorithm for large-scale observation selection
problems.

1. INTRODUCTION

We consider a signal y, which is a linearly transformed
version of x observed in the presence of additive noise.
This signal is described by

y = Ax+ u; (1)

where u is additive noise. Suppose that A 2 Cj m�n,
where m � n. The goal is to reconstruct a good esti-
mate of x given the observed signal y.

In many applications, the matrix A is known a pri-
ori, but the elements of y are not. Observing the ele-
ments of y may be expensive, time-consuming, or risky;
in such cases we desire to limit the number of obser-
vations. This is the case in certain problems in mag-
netic resonance (MR) imaging and MR spectroscopic
imaging (MRSI) [1{3]. The same concept is applicable
in placing sensors in control problems [4] and remote
sensing problems [5] and in determining the geometry
of antenna arrays. The process is related to statistical
experiment design, in which the experimental data are
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chosen to provide the best information about the un-
known regression parameters given a speci�c regression
model [6].

We would like to observe the k of m elements of y
that provide the best possible reconstruction of x, us-
ing only the information from the Amatrix to make the
selection of observations. This is equivalent to choos-
ing the rows of A that correspond to the best obser-
vations to acquire. We call this problem observation
selection [7]. We must de�ne a criterion for the optimal
choice of rows and deal with the resulting combinatoric
optimization problem.

In previous work, we derived a sum of squared er-
rors (SSE) criterion as a function of the rows of A under
the assumption of zero-mean i.i.d. noise and a least-
squares reconstruction [7]. We also proved that the
criterion (2) increases monotically as rows are removed
from A. Establishing this property allowed us to apply
branch-and-bound (B&B) to the optimization problem
to determine an optimal combination of observations
(rows). B&B is much more e�cient than exhaustive
search and also yields an optimal result. However, B&B
can still be computationally prohibitive for even mod-
erately sized problems. Therefore, we also proposed
the use of sequential backward selection (SBS). SBS
sequentially eliminates one row at a time until k rows
remain. Although this approach is suboptimal, it elimi-
nates the combinatoric problem. Furthermore, we have
shown that a certain level of performance can be guar-
anteed if SBS is used [8].

In the next section, we derive e�cient implementa-
tions of the SBS algorithm and analyze the computa-
tional requirements of these implementations. In Sec-
tion 3, we propose an improvement for the case where
the matrix A is too large to be stored or inverted di-
rectly. In Section 4, we demonstrate the algorithm with
simulations.



2. SBS ALGORITHMS

2.1. Selection Criteria

If the noise u is i.i.d. and the reconstruction of x is
performed via least squares, we have shown [7] that
the SSE in the reconstruction is proportional to

E(A) = tr (AHA)
�1

(2)

A more general form of the criterion above is

E(A) = tr (AHA+K)
�1

(3)

where K is Hermitian and nonnegative de�nite. This
form covers two cases:

1. In certain applications, some of the observations
may not be optional. For example, in a control
sensor selection problem, some of the sensors may
be pre-existing; therefore, the corresponding ob-
servations are available at no extra cost. In other
applications, a previously selected subset of ob-
servations may be available that is known to be a
good starting point for selecting further observa-
tions. In still other applications, a subset of ob-
servations may already have been acquired before
selecting subsequent observations for acquisition.

2. In the case of reconstruction with a Wiener �lter,
the selection criterion will have the form of (3),
where K = �2uR

�1

x [9].

Our results are equally applicable for this general case.

2.2. SBS Options

Sequential backward selection begins with a candidate
matrix and sequentially eliminates the least important
row at each step until the desired number of rows re-
main. A derivation of the algorithm is given in [7],
but we sketch it again here using the more general
form of the criterion. Let ai represent row i of A, and

B = (AHA+K)
�1

. If we eliminate ai from A, the
modi�ed B is given by the Sherman-Morrison matrix
inversion formula [10] as

~B = B +
BaHi aiB

1� aiBa
H
i

(4)

Taking the trace of both sides gives

tr ~B = trB +
trBaHi aiB

1� aiBa
H
i

(5)

and using the property that trCDE = trDEC, we
obtain

tr ~B = trB +
aiBBa

H
i

1� aiBa
H
i

(6)

Therefore, the criterion is minimized at each step by
eliminating the row (observation) that minimizes

aiBBa
H
i

1� aiBa
H
i

(7)

We now consider some options for incorporating the
simpli�ed criterion into an SBS algorithm.

2.2.1. No Matrix Storage

If the candidate matrix is too large to be stored, we

must solve a linear system to compute (AHA)
�1

ai for
each row in the candidate matrix. While some matrices
may have a special structure that can be exploited for
greater e�ciency, we consider the general case here. If
matrix storage is not possible, the only alternative in
general is an iterative solution. Since conjugate gradi-
ents converges in n iterations for n unknowns (assum-
ing in�nite precision), we consider the use of conjugate
gradients here. The problem can be evaluated by

�(vi) = kei �Avik
2 (8)

where ei is the ith column of an m�m identity matrix.
The SBS criterion (7) can then be computed as

vHi vi

1� aivi
(9)

since (AHA)
�1

= (AHA)�H .
With this strategy, we need n(2n2+4n) ops for the

conjugate gradients algorithm. Then for m� j rows in
the candidate matrix, the strategy requires a total of
(m� j)(2n3+4n2) ops. If we sum over all eliminated
rows and retain only the highest-order terms, the ap-
proximate op count for the algorithm is (m2 � k2)n3,
where k is the �nal number of rows.

2.2.2. Storage of (AHA)�1

If a matrix can be stored, the computation can be re-
duced dramatically. First, the computation of the crite-
rion for each candidate row reduces to a matrix-vector
multiply to obtain vi, and then we can use (9). Second,
once the row to be eliminated has been determined, we
can use (4) to update B. Retaining only the highest-
order terms, the approximate op count for the algo-
rithm is (m2 � k2)n2.

2.2.3. Storage of (AHA)�1AH

Alternatively, BAH can be updated e�ciently by using
a slightly modi�ed version of (4):

~BAH = BAH +
BaHi aiBA

H

1� aiBa
H
i

(10)



and then deleting column i from the result. Note that
in this approach no matrix-vector multiplies are re-
quired, since BaHi is simply a column of BAH . Retain-
ing only the highest-order terms, the approximate op
count for the algorithm is 4(m2 � k2)n+ 2

3
n3 + 3mn2.

This is generally more computationally e�cient than
the other algorithms. However, more memory is re-
quired to store BAH .

3. IMPROVED ALGORITHM FOR LARGE-SCALE
PROBLEMS

If we observe (7), we see that the quantities aiBa
H
i and

aiBBa
H
i are needed for each row i to determine which

row to eliminate at each step. For the case where A is
too large to store, we observed that the quantity BaHi
can be computed for each remaining row at each elimi-
nation step by minimizing (8). From this, the criterion
can be computed for each row. Unfortunately, if A is
large, then minimizing (8) for every remaining row at
every step may require a tremendous amount of com-
putation!

Fortunately, the no-matrix-storage case can be made
much more e�cient by recursively computing the quan-
tities ajBa

H
j and ajBBa

H
j . Using (4), we can write the

�rst quantity recursively as

aj ~Ba
H
j = ajBa

H
j + �iajBa

H
i aiBa

H
j (11)

where �i = 1

1�aiBa
H

i

. Likewise, the second quantity

can be written as

aj ~B ~BaHj = ajBBa
H
j + 2�iRefajBBa

H
i aiBa

H
j g

+�2i ajBa
H
i aiBBa

H
i aiBa

H
j (12)

To compute these quantities, we must have available
the vector quantities BaHi and BBaHi . With these
quantities available, we can compute all of the nec-
essary quantities for updating (11) and (12) for each
remaining row.

The quantity vi = BaHi must be computed itera-
tively if B is too large to store. This can be accom-
plished by minimizing (8). The quantity wi = BBaHi
can then be computed by iteratively minimizing

�(wi) = kvi �Bwik
2 (13)

with respect to wi. With these quantities in hand, we
can rewrite (11) and (12) as

aj ~Ba
H
j = ajBa

H
j + �ijajvij

2 (14)

where �i =
1

1�aivi
, and

aj ~B ~BaHj = ajBBa
H
j + 2�iRef(ajwi)(v

H
i a

H
j )g

+�2i jajvij
2(aiwi) (15)

Note that vi and wi only need to be computed once
per elimination step, since every remaining row can be
evaluated from the recursively computed terms in (14)
and (15).

This strategy requires two conjugate-gradient so-
lutions per elimination step as well as m solutions to
initialize the recursively computed values. (For some
problems, the initial values may be known and do not
have to be computed.) Thus, after retaining only the
highest-order terms, the total op count is 2(3m �
2k)n3, which represents an order reduction as com-
pared to the direct method.

4. NUMERICAL RESULTS

We considered four di�erent candidate matrices to il-
lustrate the computational complexity of the algorithms.
The matrices were chosen to be 100� 10, 1000� 100,
100�20, and 1000�200. Flop counts for each of these
are shown in Table 2. the The results of the SBS al-
gorithm for row sizes from m down to n are shown
in Figure 1 for a 100� 10 matrix formed by selecting
each element from a normal random number generator.
The curve represents actual SSE achieved with SBS as
a function of the number of rows remaining. The SSE
increases modestly as rows are removed, and the upper
bound is fairly tight.

The computational complexity requirements for the
various forms of the SBS algorithm are shown in Ta-
ble 2, assuming the number of rows chosen equals the
number of columns. Note that the form of the algo-

rithm that stores (AHA+K)
�1

AH generally requires
the least computation. On the other hand, the memory
requirements for this algorithm are signi�cantly higher
than for the other algorithms.

5. CONCLUSION

We have developed several sequential observation selec-
tion algorithms and analyzed their computational com-
plexity. We found that there is a clear tradeo� between
memory and computational requirements among the
algorithms. In some cases, the memory requirements
may be prohibitive, but this means that the compu-
tational burden may be signi�cantly higher. Fortu-
nately, our improved no-storage algorithm allows for
only a modest increase in computation over storage of
(AHA)�1. By exploiting the speci�c structure of the
matrix A, it may be possible to reduce the complex-
ity even more. We are continuing to investigate this
possibility for applications of interest.
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Figure 1: SSE as a function of remaining rows using
the SBS algorithm

Table 1: Flops Required in Sequential Algorithms

No matrix storage (m2 � k2)n3

Improved no storage 2(3m� 2k)n3

Storage of (AHA)
�1

(m2 � k2)n2

Storage of (AHA)
�1

AH 4(m2 � k2)n+ 2

3
n3 + 3mn2

Table 2: Computational Complexity Comparison

Matrix Size Algorithm Flops
No matrix storage 2.1e+06
Improved no matrix storage 5.6e+05

100x10 Storage of (AHA)
�1

1.9e+05

Storage of (AHA)
�1

AH 9.9e+05
No matrix storage 1.9e+11
Improved no matrix storage 5.6e+09

1000x100 Storage of (AHA)
�1

1.9e+09

Storage of (AHA)
�1

AH 1.1e+08
No matrix storage 3.1e+07
Improved no matrix storage 4.2e+06

100x20 Storage of (AHA)
�1

1.4e+06

Storage of (AHA)
�1

AH 4.0e+05
No matrix storage 2.9e+12
Improved no matrix storage 4.2e+10

1000x200 Storage of (AHA)
�1

1.4e+10

Storage of (AHA)
�1

AH 4.1e+08


