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ABSTRACT

Recent studies suggest that a hybrid speech recognition sys-
tem based on a hidden Markov model (HMM) with a neural
network (NN) subsystem as the estimator of the state con-
ditional observation probability may have some advantages
over the conventional HMMs with Gaussian mixture models
for the observation probabilities. The HMM and NN mod-
ules are typically treated as separate entities in a hybrid sys-
tem. This paper, however, suggests that thea priori knowl-
edge of HMM structure can be beneficial in the design of the
NN subsystem. A case of isolated word recognition is stud-
ied to demonstrate that a substantially simplified NN can
be achieved in a structured HMM by applying a Bayesian
factorization and pre-classification. The results indicate a
similar performance to that obtained with the classical ap-
proach with much less complexity in NN structure.

1. INTRODUCTION

Most state-of-the-art speech recognition systems are cur-
rently based on hidden Markov models (HMM). HMMs
provide a non-stationary statistical model which fits the
acoustic signals very well [1]. An HMM is a finite state ma-
chine defined by two sets of probability distributions. The
first set, known as the transition probabilities, indicates how
likely a transition from one state to another is. The second
set, often referred to as observation probabilities, indicates
the likelihood of observing acoustic features in each state.
The HMM parameters are optimized for a training set by ap-
plying a maximum likelihood estimator. In the conventional
systems, the observation probabilities are most widely mod-
eled as a mixture of Gaussian distributions. Recent studies
[2, 3, 4], however, have shown both theoretically and prac-
tically that a multi-layer perceptron (MLP) can be used to
generate these probabilities. The main advantage of using
an MLP is that it provides a flexible model with weaker as-
sumptions on the functional form of the observation densi-
ties [4].

The HMM and NN modules are conventionally de-
signed as independent blocks in a hybrid system. This paper
points out the mutual effect of these two modules. More

specifically, it will be shown that an HMM with regular
two-dimensional structure may lead to an MLP with sub-
stantially reduced complexity.

In the following sections we examine a case of iso-
lated digit recognition. We show that by casting a two-
dimensional structure to the HMM, we can use a Bayesian
factorization to break a large MLP into a few small ones.
Bayesian factorization of observation probabilities in hybrid
HMM-MLP systems was introduced by Bourlardet. al. [5],
[6]. Various architectures derived from these factorizations
have been applied to context-dependent speech recognition
[7] and gender adaptation [8]. We present an extension of
these procedures to the factorization of observation proba-
bilities for the case of HMMs with regular structures such
as those found in small vocabulary recognition systems.

We also present some of the related implementation is-
sues and preliminary experimental results.

2. THEORY

It is well known that, when properly trained, a classify-
ing MLP provides classa posteriori probabilities [9]. In
a hybrid HMM-MLP speech recognition system, the MLP
is used to generate the observation probabilities which are
defined as follows:

bi(x) = p(X(t) = xjqt = i) (1)

whereX(t) is the random vector of speech features andqt
indicates the state of the HMM at timet. It is not obvious
from this equation, how to use an MLP to estimatebi(x).
However, by using Baye's rule, this equation can be rewrit-
ten such that the new expression contains thea posteriori
probability of states as:

bi(x) = p(xji) =
P (ijx)p(x)

P (i)
(2)

Now,P (ijx) is in a form that can be generated with an MLP.
For the purpose of this paper, the value of the probability
of acoustic features,p(x), is not required because it is a
common factor for all states at a given time. A normalized



bi can be obtained by dividing Equation 2 by this common
factor.

�bi(x) =
P (ijx)

P (i)
(3)

Figure 1 shows a typical HMM for an isolated word
recognition system. A case of digit recognition where the
vocabulary consists of ten words is exemplified. We as-
sume a 5-state model for each digit which accommodates
the maximum number of phones per word in the vocabu-
lary. It may seem that this model does not have an efficient
structure because some words can be modeled with fewer
states. We will shortly show that having similar structures
for all the words helps us to simplify the MLP structure.
There are also one initial and one final state in this figure
representing silence. The total number of states in this
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Figure 1: The HMM for isolated digit recognition

model is 50, not counting the silence states. Therefore, the
MLP needs to classify 50 states and thus needs to have 50
outputs. However, this HMM is not an arbitrary collection
of states and as it is clear from Fig. 1 it essentially forms a
two-dimensional array of states. This particular structure is
due to the left-to-right flow of the state transitions and the
choice of equal number of states per word. We can take ad-
vantage of this structure to simplify either the complexity or
the classifying task of the MLP.

In this two-dimensional array, each state can be referred
to with two indices, row number and column number. We
refer to each column of states as a segments because it is
associated with a time segment of speech signal. The sec-
ond index is the row number which also identifies the cor-
responding digitd. Replacing each state number with the
corresponding pair of indices in Eq. 3, we get

�bi(x) =
P (s; djx)

P (s; d)
s = 1; � � � ; S (4)

d = 1; � � � ; D

whereS is the total number of segments andD is the vo-
cabulary size. For our example of digit recognitionS = 5
andD = 10.

With a Bayesian factorization, Eq. 4 can be rewritten as:

�bi(x) =
P (djx; s)P (sjx)

P (sjd)P (d)
(5)

There are two terms in this expression that can be esti-
mated by MLPs: thea posteriori probability of the seg-
mentsP (sjx), and thea posterioriprobability of the digits
for each segmentP (djx; s). This suggests another struc-
ture for the observation probability estimator. In the origi-
nal structure, a single MLP withS�D (50) outputs is used
to generateP (ijx). In the new structure, we have to use two
MLPs. Each new MLP, however, is much smaller than the
original one. The MLP that is used to estimateP (sjx) has
onlyS (5) outputs and the MLP corresponding toP (djx; s)
has onlyD (10) outputs. Since the size of the input layers in
both cases are almost equal, the new structure is much less
complex than the original one.

There are several ways to implement the neural network
associated with the factorP (djx; s). One is to consider the
conditioning in the segments as an additional input to the
net. This input can take the form of a multi-valued single
input or alternatively a 1-of-S binary valued set of inputs.
Another way of implementing this neural network is based
on the definition of conditional probability and is similar to
the one proposed in [7]. It considers the conditioning on
the segments as restricting the set of input training vectors
only to those belonging to that segment. This interpretation
leads to a set ofS MLPs, one for each value ofs. Each MLP
provides the observation probability of digitd, Ps(djx), for
the corresponding segments. This last scheme, essentially,
pre-classifies an input training vector intoS segments. This
may simplify the classification task of each network as data
from specific segments may be easier to classify. It may
seem that the resulting neural network in this structure is
more complex due to multiple MLPs being used. However,
note that because of the pre-classification each new MLP is
less complex than the original one and therefore the overall
structure in both schemes can have the same order of com-
plexity.

It is worth noting that the training of an MLP with
Bayesian factorization not only requires the information on
the digitd that the MLP is being trained for, but also needs
the knowledge of the segments that the input vectorx be-
longs to. The optimal segmentation information is not avail-
able in advance and it is in fact obtained from the model
itself. We use the so-called connectionist Viterbi training
algorithm explained in [2]. It is an iterative approach which
starts with an initial guess for segmentation. The model is
optimized based on this guess and a better segmentation is
obtained by finding the best state sequence using the Viterbi



algorithm. This procedure is repeated until the model pa-
rameters converge to a stationary point.

Thea posterioriprobabilities are not the only parame-
ters to be estimated. To calculate the observation probabil-
ities from Eq. 5 we also need to find the conditional prob-
ability of segments,P (sjd), and thea priori probability of
digitsP (d). The latter is usually obtained from a language
model. In this work, it is assumed that all words in the vo-
cabulary are equiprobable. The other term,P (sjd), can be
estimated from the segmentation information as

P (sjd) =

P
n NnsP

s

P
n Nns

(6)

whereNns denotes the number of input vectors allocated to
the sth segment for thenth entry in the training set corre-
sponding to digitd.

The other set of parameters in the HMM is the set of
transition probabilities defined as

aij = P (qt = jjqt�1 = i) (7)

The maximum likelihood estimation ofaii given the input
segmentation is

aii =

P
n NnsP

n Nns +
P

n 1
(8)

Since the HMM is strictly left-to-right then

ai;i+1 = 1� aii (9)

aij = 0 j 6= i or i+ 1 (10)

Figure 2 is the flow chart that summarizes the training
process. Note that in addition to the re-segmentation loop,
there is an implicit iterative gradient descent training loop
inside the NN training block.

3. IMPLEMENTATION

We study three implementations of a hybrid system based
on the HMM shown in Fig. 1. These implementations are
different only in the architecture of the NN subsystem. Ar-
chitecture 1 is the direct implementation which consists of
just one MLP with 51 outputs, one for each state of the
HMM. Architecture 2 is obtained by Bayesian factorization
and has two MLPs. One MLP estimates the probability of
segments,P (sjx). It has 6 outputs, one for each segment
and one extra for segments of silence. The second MLP
providesa posteriori digit probabilities,P (djs;x). This
MLP has 10 outputs and one additional input for segment
index. Architecture 3 is obtained by taking into account
the conditioning on the segment to train digit probabilities
using 5 MLPs, one for each segment. Using the defini-
tion of conditional probability, each segment-specific MLP
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Figure 2: The training flow chart

is trained using the data associated with the corresponding
segment.There is an MLP to compute segment probabilities
identical to the one in the previous architecture.

We have considered a 3-layer structure for all MLPs.
The acoustic input vector,x, consists of the first 13 cepstral
coefficients calculated over frames of length 25.6 ms. Each
frame consists of 512 samples of speech signal and there is
a 10 ms overlap between adjacent frames. An error back
propagation algorithm with adaptive learning rate is used
to train the neural networks. Both mean squared error and
relative entropy have been examined as measures of error.
A better performance is obtained consistently using relative
entropy. This can be justified by considering the fact that
the relative entropy is a better measure of distance for PDFs.
The training set consists of 1000 utterances from a set of 50
diverse speakers. To avoid over-fitting, 20% of the training
set is reserved for cross-validation.

4. RESULTS AND DISCUSSION

We have studied several implementations of each architec-
ture with various sizes of hidden layer. Table 1 summarizes
the best performance obtained from each architecture along
with the corresponding relative size and complexity. The



size of each architecture is measured as the total number
of weights in neural networks. The recognition complex-
ity is the number of multiplications required to calculate the
observation probabilities. The training complexity is a mea-
sure of the total training time for the neural networks. We
normalized all numbers to that of architecture 1.

Arch. Train Test size complexity
(%) (%) training recognition

1 99.87 98.40 1.0 1.0 1.0
2 99.87 98.60 0.7 0.3 1.5
3 100 99.00 1.1 0.3 1.1

Table 1: Best performance obtained for each architecture.

By applying the Bayesian factorization to architecture 1
we could substantially reduce the training complexity in ar-
chitecture 2. However, this lead to higher recognition com-
plexity. The use of segment-specific MLPs in architecture 3
has reduced this recognition time back to that of architec-
ture 1 without increasing the training time. Architecture 3
has also exhibited the best recognition rate.

Table 2 is a comparison of the training and recognition
complexities when all architectures provide the same level
of performance. Architecture 1 is the most complex im-
plementation and it has the highest number of parameters
to be trained. Bayesian factorization greatly reduces the
number of parameters in architecture 2. This allows bet-
ter training and faster recognition. Architecture 3 is the
least complex implementation obtained by using segment-
specific MLPs. Although it has more parameters comparing
to architecture 2, the corresponding training and recognition
times are shorter due to its parallel structure. This structure
can be used in a multi-processor system to further reduce
the training and recognition time.

Arch. Train Test size complexity
(%) (%) training recognition

1 99.87 98.40 1.0 1.0 1.0
2 99.87 98.40 0.4 0.3 0.7
3 99.87 98.40 0.6 0.2 0.6

Table 2: Complexity comparison when all architectures pro-
vide similar performance.

5. CONCLUSION

We introduced simplified neural network architectures in
a hybrid system for speech recognition. In this system,
like other hybrid systems, a hidden Markov model is used
as the basic structure and a neural network is used to
generate the necessary observation probabilities. We ap-
plied a Bayesian factorization to take advantage of the

two-dimensional structure of the HMM in order to reduce
the complexity of the neural network. We also suggested
a segment-specific MLP architecture which simplifies the
training process.

Although we presented our results in the case of isolated
word recognition, our approach can be applied to any small-
vocabulary hybrid HMM-MLP recognition system that can
be casted in a regular two-dimensional structure.
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