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ABSTRACT

In this paper we formulate a training framework and
present a method for task independent utterance verification.
Verification-specific HMMs are defined and discriminatively
trained using minimum verification error training. Task
independence is accomplished by performing the verification on
the subword level and training the verification models using a
general phonetically balanced database that is independent of
the application tasks. Experimental results show that the
proposed method significantly outperforms two other commonly
used task independent utterance verification techniques. It is
shown that the equal error rate of false alarms and false
keyword rejection is reduced by more than 22% compared to
the other two methods on a large vocabulary recognition task.

1. INTRODUCTION

One of the main features of subword-based speech
recognition is that, if the acoustic subword models are trained in
a task independent fashion, then the recognizer can reliably be
applied to many different tasks without the need for retraining.
In such a case, only the language model needs to be updated.
Recent advances in speech recognition technology have enabled
the development of very large vocabulary systems, where it is
almost impossible to use anything but subword-based acoustic
modeling. With any deployable speech recognition system
comes the need for utterance verification to reliably identify and
reject out-of-vocabulary speech and extraneous sounds. Task
independent utterance verification is therefore very desirable to
complement task independent subword-based recognition.

Certain methods for task independent utterance verification
have been proposed. For example in [1] an "on-line garbage"
likelihood is computed and a likelihood ratio is then formed
between the "on-line garbage" likelihood and the likelihood of
the recognized word, phrase, or sentence. In [2] a linear
discriminator is defined and trained to construct a subword level
verification score that is incorporated into a string (sentence)
level verification score. Another method that has been used is
based on forming a likelihood ratio test between the likelihood
of a free subword decoder and the likelihood of the recognized
sentence [2,3].

In this paper we present a new method for task independent
utterance verification. This method is a generalization of the
method presented in [2]. While in [2], linear discrimination is
employed for the verification task, in this work we define and
discriminatively train verification-specific HMMs, separate
from the recognition HMMs, to perform subword level
verification. We formulate a subword-based minimum
verification error (SB-MVE) training and use it to train these
HMMs. Verification is first performed on the subword level
and then, in a second stage, on the phrase or sentence level. In
this fashion, we can accomplish task independence since the
verification models are subword-based and trained in a task
independent mode. This SB-MVE formulation extends the
word-based minimum verification error (WB-MVE) training
introduced in [4].

The organization of this paper is as follows: In the next
section we formulate the subword-based verification problem,
and in Section 3 we describe the SB-MVE training procedure.
Experimental results are given in Section 4 followed by
conclusions in Section 5.

2. FORMULATION

Given input speech to an HMM recognizer, let W k be the
most likely word, or string of words obtained by Viterbi
decoding. In the context of subword recognition, W k is a
concatenation of subword units which can be written as

W k = s1
(k) s2

(k) . . . sNk

(k) (1)

where the subword string s1
(k) s2

(k) . . . sNk

(k) is the subword

lexical representation of W k, and N k is the number of subword
units comprising W k. Assuming independence among subword
units, maximum likelihood Viterbi decoding implies that we can
write the likelihood of the observation sequence, O, given W k

as,

L(OW k ) =
t 1 ,t 2 , . . . ,t N − 1

max L(Ot 0

t 1 s1
(k) ) L(Ot 1

t 2 s2
(k) ) . . .

L(Ot N − 1

t N sNk

(k) ) . (2)

where O is the total observation sequence, Ot j − 1

t j is the

observation sequence between time t j − 1 and t j corresponding to



the speech segment for subword unit sj
(k) , and L(Ot j − 1

t j sj
(k) ) is

the likelihood of the segment Ot j − 1

t j given sj
(k) .

Given the most likely subword string corresponding to the
recognition output, W k, we now would like to test the
hypothesis that the input speech does indeed consist of W k. To
perform this utterance verification task, we employ statistical
hypothesis testing by formulating a likelihood ratio test as
follows:

T(O;W k ) =
L(OH 1 (W k ) )

L(OH 0 (W k ) )_____________ , (3)

where L(OH 0 (W k ) ) is the likelihood of the observation
sequence given the null hypothesis that W k was spoken, and
L(OH 1 (W k ) ) is the likelihood of the observation sequence
given the alternate hypothesis that W k was not spoken. The
hypothesis test is performed by comparing the likelihood ratio,
T(O;W k ), to a predefined critical threshold, r k. The region
T(O;W k ) ≥r k is called the acceptance region, and the region
T(O;W k ) < r k is called the critical rejection region. As a result,
two types of errors can occur: false rejection (Type I) errors,
and false acceptance or false alarm (Type II) errors. A given
critical threshold value implies certain false rejection and false
alarm rates. Tradeoff between the two types of errors can be
controlled by varying r k.

Rather than dealing with the likelihood ratio directly, it is
more convenient to use the log likelihood ratio which can be
written as

G(O ,W k ) = logT(O;W k )
= logL(OH 0 (W k ) ) − logL(OH 1 (W k ) ) . (4)

Since W k consists of a string of N k subwords according to
equation (1), we will represent G(O;W k ) as an average of N k

log likelihood ratios corresponding to the individual subwords
in W k, as follows:

G(O;W k ) =
N
1_ __

j = 1
Σ
Nk

logT(Ot j − 1

t j ; sj
(k) ) , (5)

where

T(Ot j − 1

t j ; sj
(k) ) =

L(Ot j − 1

t j H 1 (sj
(k) ) )

L(Ot j − 1

t j H 0 (sj
(k) ) )________________ , 1 ≤ j ≤ N k .(6)

Here H 0 (sj
(k) ) is the hypothesis that the segment Ot j − 1

t j consists

of the correct sound for subword sj
(k) , and H 1 (sj

(k) ) is the
hypothesis that the segment Ot j − 1

t j consists of a different sound.

To simplify the notation and without loss of generality, we will
drop the superscript (k) from sj

(k) and represent Ot j − 1

t j as O j .

Since the probability densities corresponding to the
likelihoods of equation (6) are not known, we will approximate
them by defining and discriminatively training verification-
specific HMMs for each subword in the recognizer subword set.
Therefore, using the simplified notation, we can write

equation (6) as

T(O j ;s j ) =
L(O jψ j )

L(O jλ j )_ _________ , (7)

where λ j and ψ j are the HMM models corresponding to the null
and alternate hypotheses for word s j , respectively. Note that λ j

and ψ j are HMMs that are different than the HMMs used during
the recognition process. Considering the likelihood ratio of
equation (7), we can view λ j as a verification-specific subword
model for subword s j and ψ j as a verification-specific anti-
subword model for subword s j . This viewpoint is underscored
by the fact that we use MVE training to determine the
parameters of λ j and ψ j . We denote the verification-specific
model set for a given subword, s j , as V j = {λ j ,ψ j }.

3. SUBWORD BASED MINIMUM VERIFICATION
ERROR (SB-MVE) TRAINING

Discriminative training is employed to determine the
parameters of the verification model set, V j , for each of the
subwords in the recognizer subword set. Based on the
definition of the subword likelihood ratio given in equation (7),
the goal of the discriminative training is to make L(O jλ j )
large compared to L(O jψ j ) when there is a correct
recognition, and to make L(O jψ j ) large compared to
L(O jλ j ) when there is a misrecognition.

We define a distance function by taking the log of the
inverse subword likelihood ratio of equation (7) as follows:

d(O j ;s j ) = − log L(O jλ j ) + log L(O jψ j ). (8)

The training procedure iteratively adjusts the parameters of V j

by minimizing d(O j ;s j ) in the case of a correct recognition and
maximizing it in the case of a misrecognition.

The function, d(O j ;s j ), is optimized using the generalized
probabilistic descent framework [5]. In such a framework,
d(O j ;s j ) is incorporated into a smooth loss function that is
conducive to applying a gradient descent procedure to
iteratively adjust the parameters of V j . Specifically, the loss
function gives a measure of the verification error rate for a
given s j and takes the form of a sigmoid function which is
written as

Q(O j ;s j ) =
1 + exp [ − b µ d(O j ;s j ) ]

1_ ______________________ , (9)

where µ is a positive constant controlling the smoothness of the
sigmoid function, and b is set to 1 in the case of a correct
recognition and to − 1 in the case of a misrecognition. The
value for µ is set to 1.0 in our experiments. The loss function in
equation (9) is iteratively minimized with respect to the
parameters of V j using gradient descent. In our experiments,
correct recognitions are obtained during SB-MVE training by
force segmenting a given sentence using its correct lexical
transcription. Misrecognitions are obtained by force



segmenting a given sentence using a random lexical
transcription. We set b to − 1 for all subwords corresponding to
a misrecognition and to 1 for all subwords corresponding to a
correct recognition.

It is important to note here that task independence is
accomplished by training V j using a general phonetically
balanced subword database. Given that the set of subwords
remains the same, the resulting V j can be used to perform
utterance verification for any recognition task without the need
for retraining.

4. EXPERIMENTAL RESULTS

This vocabulary independent utterance verification method
was evaluated on a company name recognition task, where the
goal is to recognize the name of a company out of 6963 possible
names. The average number of words per company name is 3.7
words and the average number of subword units per company
name is 18.9 units. The lexical transcription of the company
names were obtained using a text-to-speech front end. A total
of 40 context independent subword models and one silence
model were used in the recognition phase. Each subword model
was represented by a 3-state continuous density HMM, where
the maximum number of Gaussian mixtures was set to 16. The
silence model was represented by a single state HMM with 32
mixtures. The recognizer feature vector consisted of the
following 39 parameters: 12 LPC derived cepstral coefficients,
12 delta cepstral coefficients, 12 delta-delta cepstral
coefficients, normalized log energy, and the delta and delta-
delta of the energy parameter. The database used to train these
recognition models consisted of 9865 phonetically balanced
phrases and sentences collected over the public telephone
network. Minimum classification error (MCE) training was
employed to train the recognition subword models [5]. The
above phonetically balanced database was also used to train the
verification models using the SB-MVE training procedure
described in Section 3. The verification model set, V j , for a
given subword, s j , consists of two continuous density HMMs,
λ j and ψ j , having a topology of 3 states with 8 Gaussian
mixtures in each state. Therefore, there were a total of 80
verification HMMs corresponding to the 40 recognition
subwords.

The company name database used for performance
evaluation is independent of the phonetically balanced database
used in the training phase. This testing database was collected
over the public telephone network and consists of 11552
utterances spoken by 2500 different speakers covering the 6963
company names. Since we are evaluating the performance of an
utterance verification method, we also need to define a separate
database consisting of out-of-vocabulary speech. Towards this
end, we used a database consisting of 10511 utterances of
speakers saying their first and last names. This out-of-

vocabulary database was also collected over the public
telephone network.

Prior to the utterance verification stage, the recognition rate
on the company name database was 93.1%. The utterance
verification performance is shown in Figure 1. The top plot in
this figure shows the false acceptance rate (false alarms) of the
out-of-vocabulary utterances as a function of the false rejection
rate of the company name utterances. Since successful
recognition requires not only correct verification but also correct
classification, the bottom plot shows the recognizer substitution
error rate on non-rejected company names versus false rejection
rate. By fixing the false rejection rate, the recognizer operating
point can be determined by identifying the corresponding false
alarm and substitution error rates. The SB-MVE performance at
any given operating point is obtained by evaluating the
verification score, G(O;W k ), given in equation (5), and
comparing the results to a predefined threshold.
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Figure 1. Utterance verification performance comparison.

Figure 1 also compares the performance of the SB-MVE
method to two other utterance verification methods. The first is
very similar to the on-line garbage method, proposed in [1] and
also evaluated in [3]. In our experiments the on-line garbage
verification score for a given recognized company name is
computed by averaging the on-line garbage scores of the
subwords constituting the recognized company name excluding
any silence segments. It is useful to note that the SB-MVE
method also excludes all silence segments when computing the
verification score. Mathematically, the on-line verification
score that we used to obtain the on-line garbage performance
shown in Figure 1 is given by



R(O;W k ) =
N k

1___
j = 1
Σ
Nk

log
L on − line (Ot j − 1

t j )

L(Ot j − 1

t j sj
(k) )_ ____________ , (10)

where L on − line (Ot j − 1

t j ) is the on-line garbage likelihood obtained

by computing for every frame the average likelihood score of
the M top scoring states and summing over the segment Ot j − 1

t j .

In our experiments M was set to 16.

The second method with which we compared employs a
verification HMM network parallel to the HMM network
defined by the company name lexicon. The verification network
acts as the out-of-vocabulary network and consists of a self loop
of all the subword and silence models in the recognizer model
set. In effect, this out-of-vocabulary network results in a "free-
subword" maximum likelihood HMM decoding of the input
speech utterance. The verification score is defined as a log
likelihood difference between the likelihood of the recognized
company name and the likelihood of the non-keyword network.

It is clear from Figure 1 that the SB-MVE method
significantly outperforms the other methods on two fronts.
First, the SB-MVE method results in a false alarms rate that is
consistently lower than the other two methods. Second, the
post-rejection substitution error rate is also lower, implying that
the SB-MVE method is more likely than the other two methods
to reject substitution errors, a very desirable property for many
applications. Fixing the false rejection rate at 7.0% and 10.0%,
Table 1 shows a comparison of the utterance verification
performance of the three methods. These results were obtained
from the plots of Figure 1. Another point of interest is the equal
error rate (EER) of false alarms and false rejections. Table 2
compares the equal error rates of the three methods and shows
that the SB-MVE method results in an EER that is 22.0% lower
than the on-line garbage method and 32.8% lower than the free
decoding network method.
_ ______________________________________________

Table 1. Utterance verification performance_ _______________________________________________ ______________________________________________
Method False False Post-Rej.

Rej. (%) Alarms (%) Error (%)_ ______________________________________________
SB-MVE 7.0 13.0 1.6

On-Line Garb. 7.0 29.1 2.8
Free Decoding 7.0 36.8 2.5_ ______________________________________________

SB-MVE 10.0 8.0 1.2
On-Line Garb. 10.0 15.7 2.0
Free Decoding 10.0 22.1 2.0_ ______________________________________________ 



























































It is important to note that the free decoding method is
much more computationally intensive that either the SB-MVE
or the on-line garbage method. On the other hand the difference
in computational complexity between the SB-MVE and on-line
garbage method is relatively small. The SB-MVE method does,
however, require additional model storage capacity compared to
the other two methods for storing the verification-specific
models.

_ _______________________________
Table 2. Equal error rate comparison_ ________________________________ _______________________________

Method EER (%)_ _______________________________
SB-MVE 9.2

On-Line Garb. 11.8
Free Decoding 13.7_ _______________________________ 






















5. CONCLUSIONS

In this paper we formulated a framework and presented a
method for task independent utterance verification.
Verification-specific models were defined and trained using
minimum verification error training. To accomplish task
independence, the verification was performed on the subword
level and the verification models were trained using a general
task independent database that consisted of phonetically
balanced phrases and sentences. Comparing this proposed
method to two other commonly used utterance verification
methods showed that the SB-MVE method reduces the equal
error rate of false rejections and false alarms by at least 22%. In
addition, the SB-MVE method consistently resulted in lower
post-rejection substitution error rate, implying that the SB-MVE
method was more likely to reject substitution errors compared
to the other two methods.
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