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ABSTRACT

We have previously developed an algorithm and su�cient
conditions for exact multichannel blind image restoration.
In this paper, we use the resultant matrix theorem and
techniques of algebraic geometry to prove that the su�cient
conditions hold generically given three blurred versions of
the same image and some restrictions on the size of the
original image. Moreover, the extension to multichannel
blind n-dimensional signal restoration is described.

1. INTRODUCTION

Recently, we extended a blind, one-dimensional symbol es-
timation algorithm [1] to two dimensions [2], i.e., multi-
channel blind image restoration. We have proved su�cient
conditions to achieve exact restoration of blurred images in
the noise-free case; i.e., the restored image is the same as the
original image up to a scalar multiplier. A more advanced
discussion of this algorithm in the noisy case and a correc-
tion to the su�cient conditions are provided in [3]. Here,
we use the resultant matrix theorem and techniques of alge-
braic geometry to prove that the su�cient conditions hold
generically given three blurred versions of the same images
and some restrictions on the size of the original image.

While we were completing this work, we became aware
of similar results obtained by Harikumar and Bresler [4].
Nevertheless, their arguments and algorithm are di�erent
from ours. Our approach can be easily extended to multi-
channel blind n-dimensional signal restoration.

The remainder of this paper is organized as followed.
Section 2 describes a model for a multichannel imaging sys-
tem (noise-free). In Section 3, we mention two necessary
de�nitions and two useful theorems for our main theorems,
which are proved in Section 4. The extension to multichan-
nel blind n-dimensional signal restoration is in Section 5.
We present simulation results in Section 6. Conclusions,
with a description of future work on this topic, are made in
Section 7.

This work was supported in part by the US ARMY Research
O�ce under grant DAAH-04-95-I-0494 and the AFOSR under
grant F49620-97-1-0392.
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Figure 1: Single-input multiple-output image-blur model

2. PROBLEM STATEMENT

As shown in Figure 1, in the noise-free case the mth ob-
served image is given by

xm(n1; n2) =

L1�1X
l1=0

L2�1X
l2=0

hm(l1; l2)s(n1 � l1; n2 � l2) ;

where s(n1; n2) is the original image and xm(n1; n2) is the
output from the mth linear, space-invariant blur function
hm(l1; l2). The extent of s(n1; n2) isN1�N2: The maximum
orders of all blur functions in each dimension are L1 and
L2; respectively. There are M observed images. Therefore,
nj = 0; 1; : : : ; Nj ; lj = 0; 1; : : : ; Lj ; j = 1; 2; and m =
1; 2; : : : ;M .

3. BACKGROUND DEFINITIONS AND

THEOREMS

First, we make some de�nitions which are similar to those
in many algebraic geometry texts. C denotes the complex
numbers.

� De�nition 1 ([5]): A subset V � C
n is an algebraic set

if there is a collection ffig of complex polynomials in
n variables such that V is the set of common zeros of
ffig: In other words,

V = fx = (x1; x2; : : : ; xn) j 8i : fi(x) = 0g :



� De�nition 2 ([6]): A subset U � C
n is generic if its

complement is contained in an algebraic set whose
dimension is less than n:

Remark: Let U1; U2; : : : ; Uk be generic subsets of C
n ; where

k is a �nite number, and let the complement of Ui be con-
tained in the algebraic set Vi. De�ne U =

T
Ui. Then the

complement of U is contained in V =
S
Vi, whose dimen-

sion is less than n ([7], page 67). Therefore, U is generic.

Theorem 1 ([7], page 61): If V is an algebraic subset of C n ;
then dim(V ) (the dimension of V ) is less than or equal to
n: If dim(V ) is equal to n then V = C

n :

Given two polynomials

a(z) = a0z
p�1 + a1z

p�2 + � � �+ ap�1; a0 6= 0

and

b(z) = b0z
q�1 + b1z

q�2 + � � �+ bq�1; q � p;

de�ne a so-called resultant matrix or Sylvester matrix

R(fai; bjg) =2
66666666666664

a0 a1 � � � ap�1 0 � � � 0

0 a0 a1 � � � ap�1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 � � � 0 a0 a1 � � � ap�1
b0 b1 � � � bq�1 0 � � � 0

0 b0 b1 � � � bq�1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 � � � 0 b0 b1 � � � bq�1

3
77777777777775

:

| {z }
p+ q � 2 columns

Note that R(fai; bjg) is a (p + q � 2) � (p+ q � 2) square
matrix.

Theorem 2 (Sylvester's Resultant) ([8]): The polynomials
a(z); b(z) share no common zero if and only if det(R(fai; bjg))
(the determinant of R(fai; bjg)) is not equal to 0:

In other words, det(R(ai; bj)) is equal to 0 if and only if
a0 is equal to zero or a(z); b(z) do share a common zero. In
this paper, we call a0 the leading element of the resultant
matrix.

4. MAIN THEOREMS

De�ne that Sn1 =2
664

s(n1; 0) s(n1; 1) � � � s(n1; N2 � r2 � 1)
s(n1; 1) s(n1; 2) � � � s(n1; N2 � r2)

...
...

...
...

s(n1; r2) s(n1; r2 + 1) � � � s(n1; N2 � 1)

3
775 ;

where r2 = L2 +K2 � 2: In [2, 3], we prove the following

Theorem 3: Assume that

1. The polynomials

hm(z1; z2) =

L1�1X
l1=0

L2�1X
l2=0

hm(L1�l1�1; L2�l2�1)z
l1
1 z

l2
2

for m = 1; 2; : : : ;M share no common zero;

2. The hm(0; 0) terms for m = 1; 2; : : : ;M are not all
zero;

3. The polynomials
PL1�1

l1=0
hm(L1�l1�1; 0)zl11 form =

1; 2; : : : ;M share no common zero;

4. The polynomials
PL2�1

l2=0
hm(0; L2�l2�1)zl22 form =

1; 2; : : : ;M share no common zero; and

5. S(r1+1; r2) and S(r1; r2+1) have full row rank, where
r1 = L1 +K1 � 2 and

S(r1; r2) =

2
664

S0 S1 � � � SN1�r1�1

S1 S2 � � � SN1�r1

...
...

...
...

Sr1 Sr1+1 � � � SN1�1

3
775 :

Then the original image s can be exactly restored, up to a
scalar ambiguity, by choosing K1 > (L1 � 1)r2 and K2 >
L2 � 1:

Now, we prove that the conditions above hold generi-
cally if M � 3 and the size of s is large enough.

Lemma 1: Conditions 1{4 hold generically for M � 3:
Proof: Obviously, if conditions 1-4 can be satis�ed when
M = 3; then they also can be satis�ed when M > 3: There-
fore we assume M = 3:

First, we prove that condition 1 is satis�ed generically.
Let us rewrite hm(z1; z2) as

hm(z1; z2) =

L2�1X
l2=0

hl2m(z1)z
l2
2 ; (1)

i.e., as a one-variable (z2) polynomial with coe�cients hl2m(z1):
From these three polynomials, we can construct two resul-
tant matrices, R1(fh

i
1(z1); h

j
2(z1)g) andR2(fh

i
2(z1); h

j
3(z1)g):

Note that the determinants det(R1(fh
i
1(z1); h

j
2(z1)g)) and

det(R2(fh
i
2(z1); h

j
3(z1)g)) are two one-variable (z1) polyno-

mials. Therefore, we can construct another resultant matrix
R3(fhm(l1; l2)g) from these two polynomials.

From Theorem 2, if fhm(z1; z2)g share a common zero,
say (�1; �2); then

det(R1(fh
i
1(�1); h

j
2(�1)g)) = 0 ;

det(R2(fh
i
2(�1); h

j
3(�1)g)) = 0 :

This implies det(R3(fhm(l1; l2)g)) = 0: We can regard this
last determinant as a 3L1L2-variable polynomial. From
De�nition 1, we can de�ne an algebraic set V as the zero
set of det(R3(fhm(l1; l2)g)) in the coe�cient space C 3L1L2 :
Let U be the complement of V: Every element in U sat-
is�es det(R3(fhm(l1; l2)g)) 6= 0: In other words, the three
two-variable polynomials constructed from an element of U
share no common zero. From De�nition 2, if dim(V ) <



dim(C 3L1L2); then U is generic. We know that dim(V ) <
dim(C 3L1L2) if V 6= C

3L1L2 from Theorem 1. Therefore, if
we can �nd a point x 2 C

3L1L2 � V; we will have �nished
the proof that condition 1 holds generically.

De�ne three polynomials:

g1(z1; z2) = zL1�11 zL2�12 ;

g2(z1; z2) = zL1�11 zL2�12 + 2zL1�11 + 2zL2�12 ;

g3(z1; z2) = zL1�11 zL2�12 + zL1�11 + zL2�12 + 1 ;

and let gim(z1) be de�ned analogously to him(z1) in (1).
Then, we can obtain two polynomials

det(R1(fg
i
1(z1); g

j
2(z1)g)) =

�
(zL1�11 )(2zL1�11 )

�L2�2
;

det(R2(fg
i
2(z1); g

j
3
(z1)g)) =

�
(2� zL1�11 )(zL1�11 + 1)

�L2�2
:

Because these two polynomials share no common zero and
the leading element of R3(fgm(l1; l2)g) is not zero, we ob-
tain det(R3(fhm(l1; l2)g)) 6= 0: This means we have found
a point x 2 C

3L1L2 � V:

By following the same argument as above, we can prove
that each of conditions 2-4 holds generically. From the Re-
mark, we conclude that the conjunction of conditions 1-4
holds generically if M � 3: 2

Lemma 2: If N1 � 2r1+1 and N2 � 2r2+1, then condition
5 holds generically.
Proof: First, we want to prove that, generically, S(r1+1; r2)
has full row rank if N1 � 2r1 + 1 and N2 � 2r2 � 1:

Observe that there are only N1N2 independent elements
in S(r1 + 1; r2): Let Ti, i = 1; 2; : : : ; t, be the (r1 + 1)r2 �
(r1 + 1)r2 minors of S(r1 + 1; r2). Here,

t =

�
(N1 � r1)(N2 � r2 + 1)

(r1 + 1)r2

�
:

Let V be the algebraic subset of C
N1N2 that is the set

of common zeros of fdet(Ti): i = 1; : : : ; tg: We know that
S(r1 + 1; r2) has full column rank if and only if s =2 V: Fol-
lowing the same argument as in the proof of Lemma 1, if
we can �nd a point (2 C

N1N2 ) which is not in V; then we
will have �nished the proof that S(r1+1; r2) generically has
full row rank.

Assume that N1 � 2r1+1 and N2 � 2r2�1 and choose

s(n1; n2) =

�
1 if n1 = N1 � r1 and n2 = r2
0 else

Then S(r1 + 1; r2) will be equal to

r1 + 1 blocks

8>>>>>>>><
>>>>>>>>:

2
664
0 0 � � � � � � � � � 0 S

0 . .
.

. .
.

. .
.

0 S 0

... . .
.

. .
.

. .
.

. .
.

. .
. ...

0 � � � 0 S 0 � � � 0

3
775

| {z }
N1 � r1 blocks

where

S =

2
6664

0 � � � 0 1 0 � � � 0
... . .

.
1 0 . .

.
. .
.

0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

1 0 � � � � � � � � � � � � 0

3
7775

is an r2� (N2� r2+1) matrix. Therefore, S(r1+1; r2) has
full row rank.

By following the same argument as above, we can prove
that if N1 � 2r1 � 1 and N2 � 2r2 + 1; then S(r1; r2 + 1)
generically has full row rank. Therefore, from the Remark,
we have �nished the proof. 2

Theorem 4: Generically, if M � 3; N1 � 2r1 + 1; and N2 �
2r2 + 1; then the original image s can be exactly restored,
up to a scalar ambiguity, by choosing K1 > (L1 � 1)r2 and
K2 > L2 � 1:

5. EXTENSION TO HIGHER DIMENSIONS

In [3], we proved the su�cient conditions for exact image
restoration by using the generalized Sylvester matrix theo-
rem [9]. The main technique, like the one in the proof of
Lemma 1, is to reduce one variable at a time. By using this
technique, we can rewrite conditions 1-4 for exact multi-
channel blind image restoration as the following conditions
for exact multichannel blind n-dimensional signal restora-
tion:

1. The polynomials

hm(z1 : : : ; zn) =

L1�1X
l1=0

: : :

Ln�1X
ln=0

hm(L1 � l1 � 1; : : : ; Ln � ln � 1)zl11 : : : zlnn

for m = 1; 2; : : : ;M share no common zero;

2. Other less-than-n-variable polynomial sets with coef-
�cients from hm(l1; : : : ; ln) share no common zero.

Therefore, by following the same argument as we made
in Section 4, we can prove these two conditions hold gener-
ically given M � n+1. Similarly, we can rewrite condition
5 and prove that it holds generically.

Theorem 5: Generically, ifM � n+1; N1 � 2r1+1; : : : ; and
Nn � 2rn + 1; then the original n-dimensional signal can
be exactly restored, up to a scalar ambiguity, by choosing

Ki > (Li � 1)

nY
j=i+1

rj ; i = 1; 2; : : : ; n :

6. SIMULATION RESULTS

In Figure 2, we present simulation results using 3 � 5 blur
functions and 3 blurred versions of the original image.
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Figure 2: 3 � 5 blur functions, and 3 channels: (a) the
original image, (b) one of the blurred images, and (c) the
restored image.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we use the resultant matrix theorem and tech-
niques of algebraic geometry to prove the su�cient condi-
tions for exact multichannel blind image restoration hold
generically, given three blurred versions of the same im-
ages and some restrictions on the size of the original image.
Moreover, our methods can be easily extended to multi-
channel blind n-dimensional signal restoration. So far, we
have developed a solid mathematical foundation. In the fu-
ture, we will use e�cient matrix computation techniques to
reduce the computational cost. Also, we will apply opti-
mization techniques to accomplish blind image restoration
in the noisy case.
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