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ABSTRACT

Gradient adaptation is a useful technique for ad-
justing a set of parameters to minimize a cost func-
tion. While often easy to implement, the conver-
gence speed of gradient adaptation can be slow
when the slope of the cost function varies widely
for small changes in the parameters. In this paper,
we outline an alternative technique, termed natural
gradient adaptation, that overcomes the poor con-
vergence properties of gradient adaptation in many
cases. The natural gradient is based on di�erential
geometry and employs knowledge of the Rieman-
nian structure of the parameter space to adjust the
gradient search direction. UnlikeNewton's method,
natural gradient adaptation does not assume a lo-
cally-quadratic cost function. Moreover, for max-
imum likelihood estimation tasks, natural gradi-
ent adaptation is asymptotically Fisher-e�cient. A
simple example illustrates the desirable properties
of natural gradient adaptation.

1. INTRODUCTION

Parameter estimation is the task of determining useful nu-
merical values for certain constants within some problem
structure. Perhaps the most popular parameter estimation
method is gradient descent, an iterative optimization pro-
cedure that is often computationally-simple to implement.
Its ability both to converge quickly to and to identify the
best parameter values for a particular problem are limited
in some cases. Even so, it has found wide use in numerous
areas and is extremely popular in the adaptive �ltering and
neural network �elds, as the well-known least-mean-square
(LMS) and backpropagation algorithms are both gradient
descent methods [1].
Although often not explicitly stated, gradient descent is

most useful for cost functions (i) that have a single mini-
mum and (ii) whose gradients are isotropic in magnitude
with respect to any direction away from this minimum.
In practice, however, the cost function being optimized is
multimodal, and the gradient magnitudes are non-isotropic
about any minimum. In such cases, the parameter estimates
are only guaranteed to locally-minimize the cost function,
and convergence to any local minimum can be slow.
This paper outlines a useful alternative to standard gra-

dient adaptation. Termed natural gradient adaptation, the
proposed iterative procedure modi�es the standard gradi-
ent search direction according to the Riemannian structure
of the parameter space [2, 3]. While not removing local
cost function minima, natural gradient adaptation provides
isotropic convergence properties about any local minimum

independently of the model parametrization and of the de-
pendencies within the signals being processed by the al-
gorithm. Moreover, natural gradient adaptation overcomes
many of the limitations of Newton's method, which assumes
that the cost function being minimized is approximately
locally-quadratic [4]. For this reason, it is appropriate for a
large class of cost functions and for certain nonlinear mod-
els such as neural networks. Its two chief drawbacks are (i)
the knowledge required to determine the Riemannian struc-
ture of the parameter space and (ii) the complexity of the
resulting algorithm, although cases exist for which natural
gradient adaptation has a simple form.
The organization of this paper is as follows. In the next

section, we review the basic concepts behind standard gra-
dient descent and indicate some of its performance limita-
tions. The natural gradient is introduced in Section 3, and
its general properties are discussed in Section 4. A simple
example in Section 5 indicates some of the useful properties
of natural gradient adaptation. Conclusions are drawn in
Section 6.

2. STANDARD GRADIENT ADAPTATION

To describe standard gradient adaptation, de�ne a vector
of N adjustable parameters as

w(k) = [w1(k) w2(k) � � � wN (k)]
T (1)

where wi(k) is the ith parameter value at time k. For any
fwi(k)g, we de�ne a twice-di�erentiable scalar cost function
J (w) such that there exists at least one parameter vector
wopt = [w1;opt � � � wN;opt]

T for which
i) the N -dimensional gradient of J (w), de�ned as
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@w
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has all zero entries for w = wopt, and
ii) the (N �N) Hessian matrix F(w) with entries fij(w)

given by

fij(w) =
@2J (w)

@wi@wj

(3)

is positive-de�nite for w = wopt.
When the above conditions hold, wopt represents a local
minimum of the cost function in parameter space.
The steepest descent method is an iterative procedure for

locally-minimizing J (w) with respect to w, de�ned as

w(k+ 1) = w(k)� �(k)
@J (w(k))

@w
; (4)



where w(0) is any initial parameter vector and �(k), k =
f0; 1; 2; : : :g is a positive-valued sequence of step sizes.
The steepest descent method is an iterative technique

in which a fraction of the gradient of the cost function
with respect to each parameter is subtracted from each
parameter. This process is continued inde�nitely or un-
til the value of J (w(k)) reaches a suitably-small value, at
which point w(k) is \close" to wopt. With proper selection
of �(k), the steepest descent method adjusts w(k) so that
limk!1 w(k) = wopt for values of w(0) that are suitably-
close to wopt. Such an algorithm causes w(k) to converge
to wopt. Depending on the form of J (w), convergence to
wopt occurs according to certain measures when particular
step size sequences are used [5].
The transient behavior of any gradient descent method

depends on the form of J (w). The convergence of w(k)
to wopt can be fast or slow, depending on the choice of
�(k) and on the gradient components @J (w(k))=@wi. In
general, it is di�cult or impossible to choose �(k) in such a
way as to provide fast convergence from all possible initial
coe�cient values w(0). This di�culty stems from the fact
that the gradient components @J (w(k))=@wi vary widely
in magnitude in di�erent directions from wopt for typical
parametrizations and cost functions. Without knowledge of
where w(k) is with respect to wopt in the space of possible
parameters, one cannot choose �(k) properly to obtain fast
convergence of each wi(k) to wi;opt.

3. NATURAL GRADIENT ADAPTATION

To understand natural gradient learning requires us to re-
consider the fundamental notion of distance. In everyday
life, we possess an intuitive concept of distance, as embod-
ied in the familiar folk axiom \the shortest distance between
two points is a straight line." In mathematical terms, the
Euclidean distance between two points v and v+ �v in the
N -dimensional space spanned by v = [v1 v2 � � � vN ]T is

dE(v;v + �v) =

vuut NX
i=1

�v2i =
p
�vT �v = jj�vjj2;(5)

where �v = [�v1 �v2 � � � �vN ]T and jjvjj2 denotes the L2 or
Euclidean norm of v.
In reality, however, \straight-line" or Euclidean distance

represents an approximation to a more-complex notion of
distance. One such example can be found in most geograph-
ical maps, which depict the world as a at two-dimensional
plane instead of the curved surface that it is. The short-
est physical route between two locations is represented as
an arc on such a map, which actually is along the geodesic
de�ned by the global curvature of the earth's surface. Sur-
prisingly, non-Euclidean measures of distance are useful for
predicting certain properties of the physical world. In his
famous Theory of Relativity, Einstein postulated that mass
distorts physical space, a fact that was veri�ed in 1919 when
photographs of the sun during a solar eclipse showed that
the visual positions of stars were apparently altered by the
sun's mass. The path taken by the stars' light is the short-
est in gravitational space, although it is clearly \bent" in
Euclidean terms. To predict such e�ects, one must employ
the mathematics of curved space, a �eld known as di�er-
ential or Riemannian geometry. It is Riemannian geometry
upon which natural gradient adaptation is based [2].
In Riemannian geometry, distance is not measured ac-

cording to the Euclidean norm in (5). Rather, for two vec-
tors w and w + �w where the elements of �w are of small

magnitude, we de�ne the distance metric dw(�; �) at w as

dw(w;w+ �w) =

vuut NX
i=1

NX
j=1

�wi�wjgij(w) (6)

=
p

�wTG(w)�w; (7)

where G(w), the Riemannian metric tensor, is an (N �
N) positive-de�nite matrix whose (i; j)th entry is gij(w).
The Riemannian metric tensor characterizes the intrinsic
curvature of a particular manifold in N -dimensional space.
In the case of the Euclidean coordinate system, G(v) = I
is the identity matrix, such that (6) reduces to (5).
When the nature of the manifold can be described in

terms of a transformation of Euclidean orthogonal space
with coordinate vector v to w, then one can determine the
form of G(w) through the relationship

d2E(v;v + �v) = d2w(w;w+ �w); (8)

where �v is small and w + �w is the transformed value of
v+ �v. An example illustrates this calculation.
Example: De�ne v = [x y]T such that fx; yg de�ne a

point in two-dimensional Euclidean space. We can represent
this point using polar coordinates as

x = r cos �; y = r sin �; (9)

where w = [r �]T represents the same point in polar space.
The distance between v and v+�v in Euclidean terms is

dE(v;v + �v) =
p

�x2 + �y2: (10)

The Riemannian metric tensor G(w) for polar space is de-
�ned such that (8) holds. Noting (9), we have that

v + �v =
h
(r+ �r) cos(� + ��)
(r + �r) sin(� + ��)

i
(11)

=
h

r cos � + �r cos � � ��r sin �
r sin � + �r sin �+ ��r cos �

i
; (12)

where we have neglected terms of the form �r��i and ��i+1

for i � 1. Subtracting v from both sides of (12) gives

�v =
h

�r cos �� ��r sin �
�r sin � + ��r cos �

i
: (13)

Therefore, (10) becomes

d2E(v;v+ �v) = �r2 + r2��2 = �wT
G(w)�w;(14)

where the Riemannian metric tensor for w is found to be

G(w) =

�
1 0
0 r2

�
: (15)

2.
Although the previous example indicates that G(w) de-

pends on the value ofw in general, it can be constant-valued
in certain cases. The most-celebrated example is when w
is obtained from v in standard Euclidean space via a linear
transformation [3]. Morever, despite the form of the result
in (15), G(w) is not diagonal in general.
In Euclidean coordinates, the gradient is de�ned in (2).

It should come as no surprise, therefore, that cost func-
tions that emulate the Euclidean distance measure in (5)
are well-matched to gradient adaptation. In fact, if J (w) =



cjjw � woptjj22, where c is an arbitrary constant, then
�@J (w(k))=@w = �2c(w(k)�wopt), such that a step size
value of �(k) = 1=(2c) allows (4) to converge to wopt in
one step, irrespective of w(k). This result is obtained be-
cause the negative gradient of cjjw�woptjj22 at any w points
towards wopt.
In practice, the cost function to be minimized is not Eu-

clidean, and the underlying space of parameters is not Eu-
clidean but is curved and distorted, i.e. Riemannian. Thus,
the negative of the standard gradient �@J (w)=@w does not
represent the steepest descent direction of the cost func-
tion J (w) in the parameter space, and thus the standard
gradient direction is no longer appropriate. To obtain an
algorithm with useful convergence properties, the standard
gradient direction should be modi�ed according to the local
curvature of the parameter space. Such a technique is called
natural gradient adaptation [2]. The parameter updates for
natural gradient adaptation are given by

w(k + 1) = w(k)� �(k)G�1(w(k))
@J (w(k))

@w
; (16)

where G(w) is the Riemannian metric tensor for the pa-
rameter vector w as de�ned by the manifold of parameters.
The form of J (w(k)) can be de�ned explicitly as in the Eu-
clidean case, by measurements as in deterministic cost func-
tions, or by instantaneous approximations as in stochastic
gradient descent.
The Riemannian metric tensor is naturally de�ned from

the characteristics of the parameter space in most practical
applications. As a simple example, we can consider param-
eter spaces that are obtained from transformations of the
orthogonal Euclidean space where an Euclidean-based cost
function is most appropriate. In such situations, J (w+�w)
is identical to the squared Riemannian distance measure
d2w(w;w + �w) in (6), and thus G(w) can be determined
from the relationship in (8). Simulation examples employ-
ing these results are given in Section 5.

4. PROPERTIES OF NATURAL GRADIENT
ADAPTATION

In this section, we summarize several properties about the
natural gradient adaptive algorithm in (16). Details con-
cerning these properties can be found in the references pro-
vided in a forthcoming paper [3].

1. Natural gradient adaptation di�ers from Newton's method
in general. Newton's method employs the inverse of the
Hessian F(w) to adjust the gradient search direction in (4).
When J (w) is a quadratic function of w, F(w) is equal to
G(w) for the underlying parameter space, and thus New-
ton's method and natural gradient adaptation are identical.
In more general contexts, the two techniques are di�erent.
In particular, G(w) is always positive de�nite by construc-
tion, whereas F(w) may not be for particular choices and
values of J (w) and w, respectively.

2. Natural gradient adaptation is asymptotically Fisher-
e�cient. The Riemannian metric tensor in the space of
the parameters within a statistical model is the Fisher in-
formation matrix. Employing the natural gradient algo-
rithm for the maximum-likelihood cost function in this sit-
uation with �(k) = 1=k, the asymptotic covariance matrix
of the resulting parameter errors approaches the well-known
Cramer-Rao lower bound for unbiased parameter estimates.
In practical terms, this result means that natural gradient
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Fig. 1: (a) Standard gradients of the cost function JP (w).
(b) Natural gradients of the cost function JP (w).

adaptation provides fast adaptation performance in such
problems.

3. Natural gradient adaptation involves nonlinear parameter
updates in general. Thus, characterizing the transient per-
formance characteristics of natural gradient adaptation is a
challenging task. Certain transient and steady-state prop-
erties of several natural gradient algorithms have already
been studied, among them algorithms for blind source sep-
aration, spatial and temporal decorrelation, blind equal-
ization, multichannel blind deconvolution, and multilayer
perceptron training. The nonlinear form of the natural gra-
dient algorithm implies, however, that su�cient bounds on
the step size �(k) to guarantee stability and convergence of
the algorithm's parameters are often di�cult to obtain.

4. Natural gradient adaptation requires extensive knowledge
of the structure of the parameter estimation problem. Al-
though the natural gradient is local in nature and only de-
pends on the parameter values w(k), determining G(w)
usually requires precise knowledge of the problem structure.
However, the information needed to form G(w) varies from
problem to problem, and there exist several practical cases
where this information is easily obtained.

5. Natural gradient adaptation can be simpler to implement
than standard gradient adaptation. There exist problems for
which the update in (16) is simpler to compute than that
in (4). Such problems generally involve the estimation of a
linear system (e.g. a gain matrix or one or more transfer
functions) that is related to the inverse of some unknown
system model. In some cases, the matrix G(w) is a function
only of the estimated parameters, and these parameters can
combine with the components of @J (w)=@w to simplify the
algorithm's structure.

5. A SIMPLE EXAMPLE

Consider the cost function

JP (w) =
1

2

�
fr cos �� 1g2 + r2 sin2 �

�
; (17)

where we de�ne w = [r �]T . This cost function is identical
to JE(v) = fx�1g2+y2, where the relationship between v
and w is given by (9). Shown in Fig. 1(a) are the contours
and gradients of JP (w) for di�erent w over the range 0 �
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Fig. 2: Coe�cient trajectories for the standard gradient
(dotted) and natural gradient (dashed) algorithms for min-
imizing JP (w), as plotted in Euclidean fx; yg-coordinates.
r � 3 and j�j < �, where

�@JP (w)

@w
= �

h
r � cos �
r sin �

i
: (18)

The magnitudes of the gradients vary widely across the er-

ror surface, and they do not point towards any w
(n)
opt =

[(�1)n �n]T in general. In particular, the gradients are
small along the locus of points 2j�j = �(1 � r) for r > 0
and j�j < �. When performing a steepest descent search
of this cost function, the coe�cient trajectories are far
from straight paths, and it is challenging to choose �(k)

to quickly cause w(k) to converge to any w
(n)
opt.

Because JP (w) is equivalent to the squared Euclidean
distance measure JE(v), we have immediately from the
polar-coordinate example in Section 4 that G(w) is given
by (15), and the natural gradient algorithm in this case is

w(k+ 1) = w(k)� �(k)

"
r(k) � cos �(k)

sin �(k)

r(k)

#
: (19)

Fig. 1(b) shows the natural gradient ows in this example.
Note that the natural gradient ow lines are of a more-equal
magnitude accros the error surface as compared to the stan-
dard gradient ows, and more importantly, the magnitudes
of the natural gradients no longer greatly vary with angle
away from [1 0]T as do the standard gradient ows.
The useful behavior of the natural gradient method is

shown via the coe�cient trajectories ofw(k) as transformed
into Euclidean parameter space. Fig. 2 shows these trajec-
tories for �(k) = 0:05, in which the behavior of natural
gradient adaptation on JP (w) is nearly-identical to that
of standard gradient adaptation on JE(v). The nearly-
straight-path trajectories are in sharp contrast with the cir-
cuitous paths provided by standard gradient adaptation on
JP (w) as expressed in Euclidean parameter space.
We apply these concepts to sinusoidal estimation, where

y(k) = ropt cos(!k + �opt) + �(k); (20)

is a discrete-time sinusoid of known frequency corrupted
by white Gaussian noise with variance �2�. For the mean-
squared error criterion, the natural gradient algorithm for
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Fig. 3: Evolution of the averaged squared noiseless output
error for the standard and natural gradient algorithms in
the sinusoidal estimation task.

estimating [ropt �opt]
T given a realization of y(k) is [3]

r(k + 1) = r(k) + �(k)e(k) cos(!k + �(k)) (21)

�(k + 1) = �(k)� �(k)e(k)
sin(!k + �(k))

r(k)
(22)

e(k) = y(k)� r(k) cos(!k + �(k)): (23)

Fig. 3 shows the averaged squared noiseless error fe(k)�
�(k)g2 for the standard and natural gradient algorithms
in this task, as obtained from an average of 1000 di�er-
ent simulation runs with ropt = 1, ! = 0:5, �2� = 0:0001,
�(k) = 0:2, , and uniformly-distributed values for r(0), �(0),
and �opt. The natural and standard gradient algorithm's
squared noiseless output errors converge to the same steady-
state level of 10�5 in about 70 and 140 iterations, respec-
tively. The natural gradient algorithm provides inherently
faster convergence to a low steady-state error as compared
to the standard gradient algorithm in this situation.

6. CONCLUSIONS

This paper has outlined a novel optimization method known
as natural gradient adaptation. The technique provides
more-uniform convergence performance about a local min-
imum of a cost function as compared to that of standard
gradient adaptation. The algorithm can also be simple to
implement in some cases. The main disadvantage of natu-
ral gradient adaptation is the knowledge of the parameter
space or cost function error surface that is required to de-
termine the �nal form of the algorithm in any particular
case. More details concerning the form and performance of
natural gradient algorithms for perceptron training, instan-
taneous blind source separation, and blind equalization and
deconvolution can be found in the forthcoming paper [3].
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