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ABSTRACT

The mathematical theory of kernel (null space) structure of
Hankel and Hankel-like matrices is applied to the problem of
blind equalization of co-channel signals. This work builds
on recently introduced ideas in blind equalization where
the symbols are treated as deterministic parameters and
estimated directly without estimating the channel �rst. The
main contribution of the new approach is that it allows
the simultaneous exploitation of shift structure in the data
model and the �nite alphabet property of the signals.

1. INTRODUCTION

The problem of blind equalization of multiple co-channel
signals using an antenna array has received considerable at-
tention in the literature. A large number of methods have
been developed to solve this problem. These methods ex-
ploit structure in the data model or statistical or temporal
properties of the signals. Techniques have been developed
based on a range of di�erent optimality criteria and can be
found in adaptive or batch processing forms for single and
multiple source cases. A few of these techniques are derived
from subspace relationships that exist between the oversam-
pled array outputs and the symbol sequences and the shift
structure inherent in the data model [1, 2, 3]. Building upon
these ideas, in this paper we propose a novel technique for
blind equalization that is based on the mathematical the-
ory of kernel (null space) structure of Hankel matrices. This
method estimates the symbol sequences directly without an
intermediate channel estimate.

Exploiting the �nite alphabet property of digital com-
munication signals is recognized as important for blind equal-
ization. However, the subspace based blind equalizers do
not exploit the FA property directly. Rather, they compute
unconstrained least-squares estimates of the co-channel sig-
nals. The �nite alphabet property is enforced in a second
step by projecting the least-squares estimates onto the al-
phabet or by an exhaustive multiple symbol enumeration.
In contrast, in this paper, we propose a recursive equalizer
which exploits the FA property in a more direct way.

Many structured matrices (e.g., Hankel, Toeplitz, Van-
dermonde) have kernels which are also structured. Kernel
structure theory plays an implicit role in a surprisingly wide

variety of problems in mathematics, signal processing, con-
trol, and coding. We are interested in applying this theory
to the blind equalization problem in an e�ort to develop a
computationally e�cient recursive equalizer.

2. DATA MODEL

Suppose a collection of d digital communication signals ar-
rive at anM element antenna array whose outputs are sam-
pled P times per symbol period. We assume that the chan-
nel has a �nite impulse response spanning L symbol periods.
Arranging all spatio-temporal samples of the array collected
during the nth symbol period into an MP vector, the fol-
lowing baseband model of the array outputs is obtained:
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In this paper, we deal only with �nite alphabet (FA) signals
where si[n] 2 
 = f!1; � � � ; !Kg. Arranging consecutive
samples into the columns of a matrix gives
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and the symbol matrix S
(N�L+1)
n is a block Hankel matrix

with d � 1 blocks sn. The superscript on the data and
symbol matrices indicates the number of columns, while
the subscript gives the index of the last block element in
the matrix.

For now we neglect the inuence of noise and assume
that (1) is an exact mathematical description of the obser-



vations. In this paper, we assume that H has full column
rank. When this is true (MP > dL is necessary), then the
row spans and the null spaces of the data and the symbol
matrices coincide. It follows that

X
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n Gn = 0: (2)

where the columns of Gn form a basis for the null space of
X

(N�L+1)
n . This relationship will be used in Section 4 to

develop the blind equalizer.

3. KERNEL STRUCTURE OF HANKEL MATRICES

This section reviews the basic facts about kernel structure
that will be needed to develop the blind equalizer. We focus
on Hankel matrices but many of these facts can be adapted
to hold for other types of structured matrices. We begin
with some notational conventions.

Let S(n;N) = fsn�N+1; � � � ; sng be an N point se-
quence terminating in sn. Associated with the sequence
S(n;N) is the family of Hankel matrices
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where k+ l = N +1; k = 1; � � � ; N , and as before the super-
script indicates the number of columns. If the si are scalars
then S

(k)
n is an l�k Hankel matrix. Note that S

(1)
n is a col-

umn and S
(N)
n is a row. If the si are matrices themselves,

then the S
(k)
n are block Hankel matrices.

Many of the results which follow are more easily ex-
pressed in polynomial language rather than using matrix-
vector notation. We will freely switch back and forth be-
tween these representations using the natural correspon-
dence between spaces of length n vectors and the space of
polynomials of degree less than n:
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Denote the kernel (null space) of S
(k)
n by N (k)

n .

N (k)
n = fu(�) : S(k)n u = 0g (4)

Note that the coe�cients in the vector polynomials u(�) are
q � 1 vectors where q is the column dimension of si. The
�rst theorem characterizes the null space of block Hankel
matrices.
Theorem1 Given a sequence S(n;N) = fsn�N+1; � � � ; sng
of p � q matrices, there is a uniquely de�ned (p+ q)-tuple
of integers (n1; � � � ; np+q), 0 � n1 � � � � � np+q � N + 1,
and vector polynomials ui(�); i = 1; � � � ; p + q � � where

� is the defect of S
(N)
n such that deg(ui(�)) � ni and the

polynomials
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k�ni�1ui(�) (5)

where i runs over all indices with ni < k, form a basis of
N (k)
n . Proof: See [4].
We call fui(�)g

p+q
i=1 the fundamental system (FS) and

fnig
p+q
i=1 the characteristic degrees of S(n;N). The poly-

nomials in (5) are referred to as a shift chain. The fun-

damental system is not unique but has the property that
the ui(�) have no roots in common. In the following, we
assume that the (ni;ui(�)) pairs are ordered so that the ni
are nondecreasing.

Theorem 1 characterizes the null space of the block
Hankel symbol matrix S

(N�L+1)
n in (1) and all other block

Hankel matrices S
(k)
n formed from the co-channel symbol

sequences. A typical assumption in the blind equalization
problem is that the co-channel signals (rows of S

(N)
n ) are lin-

early independent, in which case � = 0. Therefore, because
the blocks in S

(N�L+1)
n are d� 1 vectors, d+1 polynomials

are needed to completely characterize the null space of S
(k)
n

for all k, and the coe�cients in these polynomials are just
scalars since q = 1.

When there is only one source (d = 1) the theorem
implies that d + 1 = 2 polynomials (vectors) are needed

to characterize the null space N (k)
n of S

(k)
n for all k. This

fact was overlooked in [5] where it was assumed that only

one polynomial was needed to span N (k)
n for all k. We

summarize these results in the following corollary.

Corollary1 Let S(n;N) = fsn�N+1; � � � ; sng consist of d
linearly independent symbol sequences. Then, d + 1 poly-
nomials (vectors) are needed to completely specify N (k)
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where ui;j is the coe�cient of �
j in ui(�) and i runs over

all indices with k > ni.

The columns of U
(k)
n are the vector equivalent of the poly-

nomial shift chain in (5).

This parsimonious parameterization of the null space
of S

(k)
n is easily modi�ed as data are added to or removed

from S(n;N). The process of adding a symbol to the end
of S(n;N) is referred to as extension. Removing a symbol
from the beginning of S(n;N) is referred to as reduction.
Given an FS for S(n;N), Heinig has given algorithms for
computing the FS for S(n + 1; N + 1) or S(n � 1; N � 1)
for both the single source (d = 1) [6] and the multi-source
(d > 1) [7] cases. These formulas can easily be manipulated
to give fundamental systems for S(n;N�1) and S(n;N+1).

These modi�cation formulas were originally proposed
as algorithms for fast inversion of Hankel and block Hankel
matrices and can be applied to Toeplitz matrices as well.
There are Levinson-type formulas which require an inner
product and Schur-type formulas that work with a \residual
system" and are inner product free. Table 1 gives Heinig's
Levinson-type extension and reduction algorithms for the
single source case. The important thing to note is the sim-
plicity of the update. The fundamental system is modi�ed
by multiplying [u1(�) u2(�)] by a upper triangular matrix.



Heinig's Algorithm (Levinson-Type, d = 1)

Extension by sn+1
Input: a FS of S(n;N) and sn+1.
Output: a FS of S(n+1; N+1) = fsn�N+1; � � � ; sn; sn+1g.
Let a = [sn�n1+1; � � � ; sn+1]u1; b = [sn�n2+1; � � � ; sn+1]u2.�
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If a = 0 then c(�) = 0 � = [0; 1]

Else if b = 0 then c(�) = 0 � = [1; 0]

Else c(�) = � b
a
�n2�n1 � = [1; 0]

Reduction by sn�N+1

Input: a FS of S(n;N).
Output: a FS of S(n;N � 1) = fsn�N+2; � � � ; sng. Let
a = u1;0; b = u2;0 and let ~ui(�) = �niui(�

�1) be the
reciprocal polynomial of ui(�).
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If a = 0 then c(�) = 0 � = [�1; 0]

Else if b = 0 then c(�) = 0 � = [0;�1]

Else c(�) = � b
a
�n2�n1 � = [0;�1]

Table 1:

Modi�cations for the d > 1 case also involve multiplication
by an unit upper triangular matrix. After executing the
algorithm we reorder the ui(�) if necessary so that the ni
are in nondecreasing order. By itself, Heinig's algorithm is
numerically unstable. In practice, the FS must be scaled
periodically. Also, we replace the conditions a = 0 and
b = 0 with jaj < � and jbj < � for some small �.

4. RECURSIVE BLIND EQUALIZATION USING
STRUCTURED KERNELS

Now we combine the results from the previous two sections
to develop an e�cient recursive equalizer. For simplicity, we
shall present the single source case. To begin, we assume
that N is chosen large enough so that S

(N�L+1)
n is wide.

We also assume that the input is rich in modes so that
both u1(�) and u2(�) are required to span N (N�L+1)

n (a
necessary and su�cient condition for this is that n1; n2 <
N � L + 1). In [5], modes are de�ned analogous to the
number frequency components in an in�nite sequence. The
number of modes is equal to n1, the characteristic degree
of u1(�), whose roots z1; � � � ; zn1 are the modes. One of
the advantages of the scheme we propose is that it adapts
naturally to the number of modes in the signals.

By Corollary 1, for d = 1 the columns of
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form a basis for N (N�L+1)
n . When no noise is present, it

follows from (2) that span fGng = span
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Next we show how to exploit the �nite alphabet prop-
erty of the signal. For simplicity assume that the symbol
alphabet is f+1;�1g. Given a FS for S(n;N) we com-
pute, using Heinig's extension algorithm, an FS for a +1
extension S(n + 1; N + 1;+1) and a �1 extension S(n +

1; N +1;�1). This leads to the shift chains U(N�L+2)
n+1 (+1)

and U
(N�L+1)
n+1 (�1), respectively. One of these extensions

is correct (i.e., corresponds to the sequence actually trans-
mitted). De�ne r(sn+1) by

r(sn+1) =
X(N�L+2)

n+1 U
(N�L+2)
n+1 (sn+1)

2
F

(6)

and suppose that the +1 extension is actually the correct
extension (i.e., sn+1 = +1). Then we will have

r(+1) = 0 and r(�1) > 0:

So, the decision, is easy, at least when there is no noise
since the subspace relation (2) holds exactly. In practice, we
compute r(sn+1) and decide sn+1 = +1 if r(+1) < r(�1)
and sn+1 = �1 otherwise. Additionally, we should point
out that Heinig's algorithm gives an FS which is not scaled
appropriately for comparison of r(+1) with r(�1). For this

reason, we replace U
(N�L+2)
n+1 (sn+1) with the Q factor from

its QR factorization which can be computed very e�ciently
by exploiting displacement structure [8]. Before moving on
to n+2 we execute a reduction step via Heinig's reduction
algorithm to remove sn�N+1. Hence, we track the FS for
the most recent N samples of the symbol sequence.

The shift structure of the data has been fully exploited
by using the shift chain basis of the null space. Further-
more, the FA property of the signal has been exploited by
considering only feasible extensions. For arbitrary K ele-
ment alphabets 
, a total of K extensions must be com-
puted (Kd for d signals). However, because the fundamen-
tal system is a parsimonious parameterization of the null
space and can be extended and reduced very easily using
Heinig's algorithm, this results in a very e�cient algorithm.
The largest expense in this algorithm is the matrix product
in the computation of r(sn+1).

We place no lower limit on the number of modes in
the signals. Because we track the fundamental system of
the exact symbol matrix, our algorithm can accommodate
any number of signal modes from the minimum of 1 up
to the maximum b(N + 1)=2c. This makes the algorithm
useful as a blind start up procedure which could be used
to equalize at the very beginning of transmission without



a channel estimate or training signals. Consider the d = 1
case. We can assume without loss of generality that the
very �rst symbol transmitted is s0 = +1 and si = 0 for
i < 0. Initialize Heinig's algorithm with [n1; n2] = [1; L]
and [u1(�);u2(�)] = [1; �L]. Now apply Heinig's extension

algorithm to the data as it arrives X
(i+1)
i for i = 1; 2; � � �

until the desired window size is reached and then interleave
reductions with the extensions. At each step we compare
r(+1) and r(�1) to make a decision.

So far we have assumed that the number of sources d
and the channel length L were known. The algorithm, how-
ever, is not very sensitive to an incorrectly chosen L. If L
is underestimated, then fewer shifts are used which does
not signi�cantly e�ect the performance. Overestimating L
however does impact the performance since more shifts are
assumed in the data than are actually present.

A fundamental limitation of this algorithm occurs due
to noise ampli�cation. Computing r(sn+1) ampli�es the

noise in the space spanned by the columns ofU
(N�L+2)
n+1 (sn+1).

Denote this space by N (sn+1). Even if sn+1 = +1 is cor-
rect, the noise power in N (+1) might be greater than that
in N (�1) leading to r(+1) > r(�1) and an incorrect deci-
sion. As with any equalizer with decision feedback, a prop-
agating error condition can occur. We suggest several reme-
dies for this situation.

Remedy1 If the noise is white, we would expect its projec-
tion onto N (+1) and N (�1) to be similar in \size" so we
would expect a large di�erence between r(+1) and r(�1).
If the di�erence is small relative to some threshold T ,

jr(+1)� r(�1)j < T;

then we cannot with certainty make a decision about sn+1.
We could then delay our decision until the next symbol
period by extending the fundamental systems and comput-
ing r(+1;+1); r(+1;�1); r(�1;+1); r(�1;�1). Then a de-
cision about the pair [sn+1; sn+2] could be made by choosing
the smallest r.

Remedy2 We could continue delaying our decision about
sn+1 as in Remedy 1 until time n+M by computing the FS
for all 2M possible r(�1; � � � ;�1). Then a decision about
sn+1 could be made based on choosing the smallest r or
comparing the sets r(+1;�1; � � � ;�1) with r(�1;�1; � � � ;
�1) in which the sequences in each set are constant on
sn+1. Either alternative could be implemented e�ciently
in a recursive manner using the Viterbi algorithm with r(�)
replacing the branch metric.

5. SIMULATIONS

Previously we suggested that the proposed algorithm could
be used to equalize at the beginning of transmission with-
out a channel estimate and without a training sequence.
This blind \start-up" feature distinguishes our algorithm
from other recursive algorithms. Batch processing meth-
ods, which can also be used for blind start-up, require at
least 20 to 30 samples and can be very computationally de-
manding. In contrast, our e�cient recursive method begins
equalizing from the very start.
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Figure 1: Kernel structure recursive blind equalizer in
\start-up" mode.

We simulated reception of a single source over a length
L = 4 channel. Assuming MP = 6. The fundamental sys-
tem was initialized as [n1; n2] = [1; L] and [u1(�);u2(�)] =
[1; �L]. Possible signal kernels were tracked as suggested in
Remedy 2 using the Viterbi algorithm and a 2L state trellis.
The results are displayed in Figure 1. For comparison, we
also give simulation results obtained using a block method
for blind symbol estimation proposed by van der Veen et
al.[1] and Liu et al.[2].
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