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ABSTRACT

The adaptive matched �lter (AMF) detector is known to be
highly vulnerable to jammers and clutter discretes on which
it has not properly trained. A vulnerability often leading
to impractical false alarm rates in non-homogeneous envi-
ronments. Sequentially following the AMF test with the
adaptive cosine estimator (ACE) detector was proposed as
a method of regulating the AMF's high false alarm rate.
The overall detection algorithm, called the adaptive side-
lobe blanker (ASB), is two dimensional and has exhibited
signi�cant potential in experimental settings of inhomoge-
neous environments. The goal of this paper is to theoreti-
cally examine the potential of this algorithm for application
in non-homogeneous environments.

1. INTRODUCTION

The AMF is a constant false alarm rate (CFAR) detector
under homogeneous clutter conditions and complex Gaus-
sian statistics [8]. In practice, the inhomogeneity of radar
clutter (especially in airborne radar systems), and the re-
sulting di�culties in estimating the data covariance matrix
signi�cantly frustrate the AMF's inherent CFAR property.
Essentially an adaptive beamformer the AMF suppresses
clutter and interference based on an estimate of the data co-
variance matrix. The data covariance is typically estimated
from a secondary data set or training set, which excludes
the target test cell [1]. If the statistics of this training data
do not characterize those of the target cell, for example the
average power in the training samples may be signi�cantly
lower than the power in the test cell, then there is poten-
tially a greater chance of experiencing many false alarms
due to undernulled clutter and/or clutter discretes [2]. An
adaptive detection algorithm called the adaptive sidelobe
blanker (ASB) was proposed [2] to reduce this false alarm
rate while maintaining detectability of true targets.
The ASB detection algorithm is a two stage adaptive se-

quential detector consisting of a �rst stage AMF detection
followed by a second stage detector known as an adaptive
cosine estimator (ACE) [3]. For a given test cell the AMF
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statistic provides a measure of the power originating from
the assumed target direction. The ACE statistic determines
what fraction of the total energy present in a test cell origi-
nates from the target direction. Only range-Doppler test
cells surviving both detection thresholdings are declared
target bearing. The ASB has exhibited signi�cant potential
in experimental settings [2, 10, 9]. The theoretical analysis
of this 2-D algorithm, which is illustrated in �g(1), under
non-homogeneous conditions is the goal of this paper.
Assuming complex Gaussian statistics exact novel closed

form expressions for the resulting probability of detection
(PD) and probability of false alarm (PFA) for the ASB
adaptive detection algorithm are derived which demon-
strate that (i) the ASB has a higher or commensurate PD
for a given PFA than both the AMF and the ACE, (ii)
the ASB has a lower or commensurate PFA for a given
PD than both the AMF and the ACE, (iii) the ASB has an
overall performance which is commensurate with the bench-
mark generalized likelihood ratio test (GLRT) [1], and (iv)
the ASB is computationally more e�cient than a straight
GLRT and provides an adjustable sensitivity to sidelobe
targets.
The last section briey discusses the viability of a con-

straint which made the present analysis under non-homoge-
neous conditions tractable and shows potential for further
application in adaptive processing. The constraint is a gen-
eralized eigen-relation (GER) between the covariance of the
test cell, that of the training set samples, and the target ar-
ray response vector.

2. ADAPTIVE DETECTION

2.1. Problem Statement

Signal presence is sought in a N � 1 vector observation (or
snapshot) x called the test cell. The test cell's covariance,
denoted by RT , is assumed unknown. It is desired to clas-
sify this snapshot into one of two categories:

H0 : x = n

H1 : x = Sv+ n;
(1)

noise only (denoted by the hypothesis H0), or target sig-
nal plus noise (denoted by H1). The target array response
vector is denoted by v and assumed to be a known quan-
tity. S is the target complex amplitude, which we assume
deterministic yet unknown.
There are two unknown parameters, RT and S, which

necessitate the use of adaptive methods. A secondary data



set (or training set) consisting of L data samples (L � N)
X = [x1j � � � jxL] is typically acquired. Each training snap-
shot xi is assumed zero mean noise only, s:t: cov(xi) = R

for i = 1; : : : ; L. For the homogeneous clutter case we as-
sume that RT = R, and hence, the utility of the training
set for parameter estimation [1]{[3]. Reality, however, of-
ten precludes this assumption. In this present study it is
therefore of interest to likewise consider the inhomogeneous
case in which RT 6= R.

2.2. Detection Algorithms

The adaptive detection algorithms under consideration in-
clude the AMF, the ACE, the GLRT, and the two dimen-
sional ASB. De�ne the symbol

bR 4
= XX

H ; (2)

to be the noise only (unnormalized) sample covariance ma-
trix (SCM). The three aforementioned 1-D adaptive detec-
tors are given by:

Adaptive Detectors

tAMF =
jvH bR�1xj2

vH bR�1v
tACE =

tAMF

xH bR�1x

tGLRT =
tAMF

1 + xH bR�1x
:

(3)

Each 1-D algorithm consists of computing and threshold-
ing a data dependent decision statistic to determine target
presence. By construction tAMF � 0, 0 � tGLRT � 1, and
0 � tACE � 1. Thus, the choice of detection thresholds
must reect these bounds: �amf � 0, 0 � �glrt � 1, and
0 � �ace � 1.
The ASB is a two dimensional adaptive detection algo-

rithm consisting of a �rst stage AMF detection followed
by a second stage ACE detection. The algorithm is best
described pictorially as in �g(1). If the test cell x pro-
duces coordinates (tAMF ; tACE) satisfying tAMF > �amf
and tACE > �ace, then and only then is x declared target
bearing.

3. PDFS AND DEPENDENCIES

AMONG STATISTICS

If we restrict attention to RT 6= R which satisfy the follow-
ing generalized eigen-relation (GER) with respect to the
target array response vector v

R�1v = � �R�1
T v (4)

then it can be shown [5] that the distributions of the deci-
sion statistics are in general dependent upon the eigenvalues
of the color matrix

C
4
= R

�1=2
RTR

�1=2: (5)

This matrix provides a measure of the color remaining in the
process R�1=2x. If RT = R, then C = I and the process
R�1=2x is white, i:e: without color. Further discussion of
this GER constraint is given in Section 6.
Let

etGLRT 4
= tGLRT =(1� tGLRT ); etACE 4

= tACE=(1� tACE);e�glrt 4= �glrt=(1� �glrt); e�ace 4
= �ace=(1� �ace)

K
4
= L�N + 2:

When eq(4) holds, the statistical summary we seek is given
by1

Distributions of Adaptive Detectors

tAMF
d
= F1;K�1(e��) � �(�� 1) +

1

�

�

etGLRT d
= F1;K�1(e��) � [�(�� 1) + 1]

etACE d
= F1;K�1(e��) � � ��

1� �
+ 1

�
(6)

where F1;K�1(e��) is a complex non-central F distributed
random variable with non-centrality parameter given by

e�2� 4
=

�
�

1 + �(�� 1)

�
� jSj2 � vHR�1v: (7)

Concerning the random variable �, note from eq(4) that
the whitened target array response vector R�1=2v is an
eigenvector of the color matrix C with eigenvalue given
by �. The remaining N � 1 eigenvectors are orthogonal
to this whitened target array response direction, and their
span shall be called the noise subspace. The distribution
of the random variable � is in general dependent on the
eigenvalues of the color matrix C corresponding to these
N � 1 noise eigenvectors. Let the total number of distinct
noise subspace roots be given by M � N � 1, and the al-
gebraic multiplicity of m�th distinct root be nm. Thus,
n1+n2+ � � �+nM = N � 1. Denote these distinct roots by
�1; �2; : : : ; �M . The pdf for the loss factor � is given by

P� =

MX
m=1

nmX
j=1

�
c�m(j)(nm � j +K)!

(K � 1)!(nm � j)!

�
(1� �)nm�j (8)

� �K�1
h
1

�m
+ �

�
1 �

1

�m

�i�(nm�j+K+1)

where 0 � � � 1 and the coe�cients c�m(j) are residues de-
pendent on the �i's. The proof of these results is detailed in
[5]. The signi�cance of these results is their quasi-generality
over the homogeneous case of RT = R.

The symbol
d
= denotes equality in distribution. If two ran-

dom quantitiesA andB are identically distributed, then we write

A
d
= B.



4. PROBABILITIES FOR 1-D

ALGORITHMS

The cumulative distribution function (cdf) for a non-central
F statistic can be written as a �nite sum [1]. De�ne

 N;M (a;x)
4
=

xN

(1 + x)N+M�1

M�1X
k=0

�
N +M � 1
k +N

�
� xk (9)

�IGk+1

�
a

1 + x

�
where IGm(b) = e�b

Pm�1

k=0
bk=k! is the incomplete Gamma

function. The conditional PD expressions (conditioned on
the loss factor �) can be written

PDAMF j� = 1�  1;K�1

�e�2� ;
�amf�

1 + �(�� 1)

�

PDGLRT j� = 1�  1;K�1

�e�2� ;
e�glrt

1 + �(�� 1)

�

PDACEj� = 1�  1;K�1

�e�2� ;
e�ace(1� �)

1 + �(�� 1)

�
:

(10)

The a priori (unconditional) PD's are given by the integrals

PD(�) =

Z 1

0

P� PD(�)j � d� (11)

where (�) = AMF, GLRT or ACE, and where P� is given in
eq(8). These results generalize those found in [1]{[3] to the
case of RT 6= R subject to the GER.
The PFAs follow from the above PD expressions by sim-

ply setting e�� = 0, which follows when no target signal is
present, i:e: S = 0.

5. PROBABILITIES FOR THE ASB 2-D

ALGORITHM

Note from �g(1) that the PD for the ASB algorithm, as-
suming hypothesis H1 is true, is given by

PDASB = Pr(tACE > �ace; tAMF > �amf ): (12)

The decision statistics are in general dependent random
variables, as implied by eq(3), and computation of PDASB

must account for this. Their statistical dependencies are
summarized in eq(6). Note from eq(6) that each detector
can be written equal in distribution to a function of the same

two dependent random variables: F1;K�1(e��) and �. This
observation allows for direct evaluation of the PD and PFA
of the ASB detection algorithm [5]. De�ne the variable

(�ace; �amf )
4
=

e�acee�ace + �amf
=

�ace
�ace + �amf (1� �ace)

: (13)

Recalling the dynamic ranges �amf � 0 and 0 � �ace � 1,
note that 0 � (�ace; �amf ) � 1 always. The sought PD

can be shown to be

PDASB =

Z (�ace;�amf )

0

P� d� � PDACEj �

+

Z 1

(�ace;�amf )

P� d� � PDAMF j �

(14)

where the conditional quantities PD(�) j � are explicitly de-
�ned in eq(10) and P� is given in eq(8).
Note also that the PFA for the ASB is obtained from

eq(14) by simply assuming that hypothesis H0 is now true

rather than H1, i:e: setting e�� = 0 which leads to:

PFAASB =

Z (�ace;�amf )

0

P� d� � PFAACEj �

+

Z 1

(�ace;�amf )

P� d� � PFAAMF j �

(15)

where the conditional quantities PFA(�) j � are implicitly de-
�ned by eq(10).

6. THE GER CONSTRAINT AND

ADAPTIVE NULLING

The GER was imposed to keep analysis tractable in [5] and
lead to the results reported in the preceding sections. We
show that non-homogeneities can be modeled in spite of the
constraints the GER imposes on the parametersR, RT , and
v. We show this by examining the statistics of the minimum
variance distortionless response (MVDR) beamformer [6].
Consider two MVDR beamformers whose clairvoyant

(known covariance) weights are given by

wT = R
�1
T v=(vHR�1

T v); w = R
�1
v=(vHR�1

v) (16)

and whose sample covariance based (SCB) adaptive weights
are respectively given by

bwT = bR�1
T v=(vH bR�1

T v); bw = bR�1
v=(vH bR�1

v) (17)

where

bRT = XTX
H
T =L and bR = XX

H=L: (18)

The adaptive weight vector with the subscript \T" repre-
sents an MVDR beamformer trained with data homoge-
neous with the test cell xT . The adaptive weight vector
without a subscript is trained with data whose covariance
is given by R 6= RT . Thus, the performance of the second
beamformer represents the inhomogeneous case and is of
interest.
The clairvoyant beam responses are de�ned as bT (�) =

wH
T d(�) and b(�) = wHd(�) where d(�) is an array re-

sponse vector parameterized by the (azimuth) look direc-
tion �. The magnitude squared jb(�)j2 as a function of �



is called the beampattern. Let the adaptive SCB beam re-
sponses and beamformer outputs be respectively denoted
by

bbT (�) = bwH
T d(�) bb(�) = bwHd(�)byT = bwH
T xT by = bwHxT :

(19)

A simple case of considerable interest is

RT = R+ qq
H�2J (20)

where the test cell x has a surprise discrete unrepresented
in training data of the MVDR beamformer bw. It can be
shown from results appearing in [6] that (i) the mean and
variance of the adaptive null formed by the beamformer bwT

on the discrete q are inversely proportional to the jammer's
power �2J whereas the beamformer bw has a beam response
in the direction of q with mean and variance independent
of �2J and therefore forms no null, and (ii) the variance of
the beamformer output by grows linearly with the jammer's
power due to the absence of null formation by the beam-
former bw.
When the GER constraint is imposed it can be shown

that the mean of the adaptive null on the discrete q

formed by beamformer bwT can be chosen to be zero, i:e:
EfbwH

T qg = 0, and the resulting variance of this null is
given by the expression

Var(bwH
T q) =

1

L�N + 1
�
qHR�1q

vHR�1v
�

1

(1 + �2Jq
HR�1q)

; (21)

which is clearly inversely proportional to the jammer's
power �2J . In addition the variance of the beamformer out-
put by is given by

1

vHR�1v

h
L

L�N + 1

i
+

1

(L�N + 1)
�
qHR�1q

vHR�1v
�2J (22)

which is clearly linear in the jammer's power �2J .
Thus, although the GER is imposed for analytic tractabil-

ity it preserves the essential statistical nature of an adaptive
null in the beamformer bwT and avoids null formation in the
beamformer bw allowing one to model inhomogeneities. Fur-
ther details of the analysis appear in [7].

7. NUMERICAL RESULTS

Several numerical results illustrating the performance of
each adaptive detection algorithm under non-homogeneous
conditions will be presented at the conference. In addi-
tion numerical results illustrating the potential utility of
the GER constraint for modeling inhomogeneities in adap-
tive processing will be presented.
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Figure 1. ASB 2-D Detection Algorithm


