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ABSTRACT

This paper develops a new wavelet-domain Bayesian framework
for modeling and estimating the intensity of a Poisson process di-
rectly from count observations. A new multiscale, multiplicative
innovations model is developed as a prior for the underlying inten-
sity function. The new prior model leads to a simple and efficient
closed-form estimator that requiresO(N) computations, whereN
is the dimension of the intensity function. We compare the new
method with previously proposed wavelet-based approaches to this
problem.

1. INTRODUCTION

This paper considers the problem of estimating the intensity of
a Poisson process from a single observation of the process. We
observe counts

c � Poisson(�) (1)

where� is a 1-d or 2-d intensity function. The intensity func-
tion is discretized and to simplify the presentation we assume that
it is a 1-d signal vector, although all results are easily extended to
images. Furthermore, we assume that bothc and� areN � 1
vectors. The contribution of this paper is a novel modeling and
estimation framework for Poisson processes based in the wavelet-
domain. The Poisson processes are encountered in many applica-
tions including medical and astronomical imaging.

There are several reasons for adopting a wavelet-domain frame-
work:

� Real-world intensity functions often display self-similarity
across scales — wavelet transforms provide efficient repre-
sentations

� The Poisson distribution is self-reproducing across scale — sum
of Poisson variates is Poisson

� Coarse-scale estimators of intensities are very reliable (high
SNR) — reliable information can be passed to finer scales

� Useful Bayesian priors are easily specified in the wavelet-
domain

We will discuss some of these motivations in more detail later.
In this paper we describe a new probability model for intensity

functions called themultiscale multiplicative innovations(MMI)
model. The MMI model leads to a very simple and powerful
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Bayesian procedure for estimating the intensity of a Poisson pro-
cess. Other wavelet-based estimators for Poisson intensity esti-
mation have been proposed in the literature. A simple wavelet-
based approach to this problem is to take the square-root of the
counts (a variance stabilizing transformation that makes the data
approximately Gaussian) and then apply standard wavelet thresh-
olding techniques for noise removal. A more sophisticated wavelet
thresholding approach is taken in [1] for the estimation of burst-
like Poisson processes. A wavelet-based method for the estima-
tion of more general Poisson intensities is developed in [2]. In
this approach, the PRESS-optimal estimator developed in [3] em-
ploys the method of cross-validation to design wavelet-domain fil-
ters for intensity estimation. These methods can provide satisfac-
tory results in certain situations. However, none of these methods
adopts a Bayesian perspective and hence do not explicitly make
use of prior information that may be available. We will show that
Bayesian estimation procedure developed in this paper can signif-
icantly outperform existing methods.

2. THE HAAR WAVELET TRANSFORM

This paper uses the following wavelet representation and notation
throughout. Letc0 designate the data sequence of countsc of
lengthN = 2J , and letc0;k be itskth element. The subscript
0 denotes the finest scale (resolution) of analysis. A multiscale
analysis ofc0 can be obtained by iterating

cj;k = cj�1;2k + cj�1;2k+1 (2)

dj;k = cj�1;2k � cj�1;2k+1

for j = 1; : : : ; J andk = 0; : : : ; N=2j � 1, andJ = log2(N).
Here,J denotes the coarsest scale of analysis.
cj;k and dj;k are termed the scaling and wavelet coefficients

of the data, respectively, at scalej and positionk. These coef-
ficients are simply the unnormalized Haar transform coefficients.
The coefficients are not normalized so that the Poisson nature of
the data is preserved at all scales. Furthermore, since the data are
obtained by counting the number of events occuring in disjoint re-
gions of space of equal size (intervals in 1-d, pixels in 2-d), the
Haar transform is ideally suited for this problem. The scaling co-

efficientscj = fcj;kg
N=2j�1
k=0 represent a lower resolution rep-

resentation of the datacj�1. The “detail” information incj�1,
which is absent incj , is conveyed by the sequence of wavelet co-

efficientsdj = fdj;kg
N=2j�1
k=0 . Note thatcj�1 can be perfectly

reconstructed fromcj anddj .
In a similar fashion, define the scaling coefficients�j;k and the

wavelet coefficients�j;k of the intensity function�. Note that



�j;k = E [cj;k] and�j;k = E [dj;k], whereE[�] denotes the expec-
tation operator. Hence, the intensity estimation problem is equiva-
lent to estimating the means of the scaling and wavelet coefficients
of the data and then inverting the transformation.

3. A NEW PROBABILITY MODEL FOR INTENSITY
FUNCTIONS

To formulate a Bayesian estimator for this problem, we assume a
prior probability model for the unknown intensity. The observed
datac is the realization of a random sequenceC (� Poisson(�)),
and� is regarded as an unknown realization of a random sequence
� with prior densityf�. Given this prior, we seek the minimum
mean-square error (mmse) estimator

�̂ = E [� jC = c ]

=

Z
�

� f(�jc)d� (3)

where f(�jc) is the conditional probability density function
f�jC(�jc). We will often follow this simplifying convention of
implicitly specifying pdf’s and probability mass functions by their
arguments.

A Bayesian approach facilitates the solution of (3) by express-
ing it in terms of the prior densityf�. Applying Bayes’ theorem
to (3)

�̂ =

R
�
�P (cj�)f(�)d�R
�
P (cj�)f(�)d�

(4)

whereP (cj�) =
Q

l �
cl
l e

��l . The Bayes’ estimator (4) poses
two interrelated problems. First, the specification of a meaning-
ful and useful priorf(�). Second, the numerical computation of
the estimator. The remainder of this section describes a new prior
probability model for intensities.

There are several important reasons for adopting a multiscale
approach to this problem.

� The multiscale decomposition is fractal in nature, so the self-
similar nature of real-world intensities is easily modeled.

� The multiscale decomposition preserves the Poisson char-
acteristic of the data at each scale due to the repro-
ducing property of the Poisson distribution, i.e.,ci �
Poisson(�i); ci independent)

P
ci � Poisson(

P
�i).

� Prior models that are mathematically tractable, computation-
ally practical, and empirically supported, can be specified
very naturally.

� Poisson data is much more reliable at coarse scales than at
fine resolutions (higher counts) higher signal-to-noise ra-
tio). Therefore, more reliable coarse-scale estimators can be
leveraged to better improve higher resolution estimators.

Together, the two first points enable a similar treatment of the
data at all scales. This, in turn, leads to a simple algorithm and fa-
cilitates the specification of the prior distribution; thus, point three.
The fourth point motivates an estimation process that evolves from
coarse to fine scales. The estimate of the intensity at scalej can be
used to efficiently compute the subsequent estimation step at the
next finer scalej � 1. These assertions will become evident in the
next section.

We are now in a position to postulate a novel, wavelet-domain
probabilistic model for the intensity. Let�j;k and�j;k denote the

random variables corresponding to thej; k-th scaling and wavelet
coefficient of the intensity, respectively. At the coarsest scalej =
J , the single scaling coefficient�J;0 has a density with support on
IR+. For example, the gamma density is conjugate to the Poisson
and is especially useful. Next, introduce independent perturbations
f�j;kg and model the wavelet coefficients by

�j;k = �j;k�j;k (5)

Each wavelet coefficient is modeled as independent perturbation
of its corresponding scaling coefficient. Furthermore, the perturba-
tions at all scales and positionsf�j;kg are assumed to be mutually
independent. Applying the recursions (3) to these coefficients, we
find that�j�1;k = 1

2
(�j;[k=2] + (�1)k�j;[k=2]), where[�] stands

for the largest integer no greater than its argument. Then, using (5)

�j�1;2k = �j;k
(1 + �j;k)

2
(6)

�j�1;2k+1 = �j;k
(1��j;k)

2

We can interpret the refinement in (7) as a multiscale innovations

structure, with the innovation
(1+�j;k)

2
entering as a multiplica-

tive, rather than additive, perturbation. We call this model amul-
tiscale multiplicative innovations(MMI) model. The model is
graphically depicted in Figure 1. The multiplicative innovation
structure is well-suited to the Poisson nature of the problem, as
demonstrated in the next section.

λj,k

λj-1,2k+1λj-1,2k

(1 - δj,k)/2(1 + δj,k)/2

Figure 1:Multiscale multiplicative innovations model. A coarse-
scale probability model of the intensity is refined via multiplicative
perturbations.

The key properties of the MMI model are:

� The model gives rise to signals of a fractal nature, as are typ-
ical in real-world imagery. A fractal structure is guaranteed
as long as the priors for the perturbationsf�j;kg are chosen
to be self-similar themselves across scales.

� The model is essentially invariant to the length of the ob-
servation time. Since we are most interested in temporally
homogeneous processes, it would be undesirable if the prior
depended on the observation time interval in a complicated
manner. Due to the multiplicative innovations structure, only
the coarsest scale of the prior is dependent on the observation
time interval.

� The model provides a mathematically tractable match to the
Poisson nature of the data, as will become apparent in Sec-
tion 3.

In the MMI model, the prior densityf� for �j;k can be chosen
as identical for allj; k, or may be defined to be distributed dif-
ferently at each scale for added flexibility. Location dependence
can also be introduced, but we have not pursued this at present.
Desired properties forf� include support on the[�1; 1] interval,
symmetry about the origin, unimodality, and concentration around



zero. The first property is due to the fact that the range of�j;k is
[��j;k;�j;k]. The second arises from the assumption that there is
no reasona priori to favor�j�1;2k over�j�1;2k+1, or vice-versa.
The third and fourth properties are based on the characteristics of
observed wavelet coefficient distributions resulting from natural
signals [4].

One very general class of probability density functions that pos-
sesses the desired characteristics are beta-mixture densities of the
form

f(�) =
MX
i=1

pi
(1� �2)si�1

B(si; si) 22si�1
(7)

for�1 � � � 1, whereB is the Euler beta function,0 � pi � 1 is

the weight of thei-th beta density (1��2)si�1

B(si;si) 2
2si�1

with parameter

si, and
PM

i=1 pi = 1. Figure 2 depicts a mixture of two beta
densities.
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Figure 2: Two component Beta-mixture distribution withp1 =
1� p2 = :2, s1 = 1:2, ands2 = 90.

4. BAYESIAN ESTIMATION

4.1. Wavelet Coefficient Estimation

Now using the MMI prior model, we can derive a simple wavelet-
domain Bayesian estimator of the intensity. Recalling the defini-
tion cj�1 is the j � 1 scale representation of the data, the best
estimate of the wavelet coefficient�j;k, givencj�1, is formulated
as follows.

b�j;k = E [�j;kjcj�1] = E [�j;k�j;kjcj�1]

= E [�j;kjcj�1] E [�j;kjcj�1] (8)

where we have exploited the independence between�j;k and�j;k.
Using (7), it can be shown that

b�j;k = E [�j;kjcj�1]

= dj;k

P
i pi

B(si+cj�1;2k ;si+cj�1;2k+1)

B(si;si) (2si+cj;k)P
i pi

B(si+cj�1;2k ;si+cj�1;2k+1)

B(si;si)

(9)

Due to page limitations we do not give all the steps here, but the
interested reader can refer to [5].

Now, the only remaining issue is the computation ofb�j;k. Here
is where we exploit our multiscale structure. Recall that at the
coarsest scaleJ , we have a single scaling coefficient�J;0. In
this case, it can be shown [5] that the Bayes’ estimateb�J;0 =
E [�J;0jcJ�1] = E [�J;0jcJ;0]. However sincecJ;0 is typically

large, the estimateb�j;k = cJ;0 is a very reasonable in practice.
With the coarsest scaling coefficient in hand, we can iterate the
estimation process by exploiting the linearity of the conditional
expectation operator

b�j�1;k = E

�
1

2
(�j;[k=2] + (�1)k�j;[k=2])

����cj�2
�

=
1

2

�b�j;[k=2] + (�1)k b�j;[k=2]� (10)

to obtain a higher resolution estimate of the intensity at scalej�1.
Note that the resulting intensity estimates are non-negative.That
is, b�j;k � 0 for j = 0; : : : ; J and allk. The overall algorithm is
described below.

Wavelet-Domain Bayesian Intensity Estimation

1. Estimate coarsest scale coefficientsb�J;k = cJ;k

2. For j = J down to1

Computeb�j;k according to (9)

Computeb�j;k = b�j;kb�j;k
Combineb�j�1;k = 1

2

�b�j;[k=2] + (�1)k b�j;[k=2]�

In general, the complexity of the proposed estimation filter, im-
plemented by means of the fast wavelet transform, isO(N), the
same order as the fast wavelet transform itself. Thus, the proposed
filter is computationally efficient.

4.2. Estimation of Prior Parameters

The distribution of real-world data wavelet coefficients often fit a
profile which resembles that of Figure 2, as previously discussed.
This makes parametric representation of the distributions very fit-
ting and, therefore, facilitates estimation of the distribution. Here
we give a very simple approach based on moment matching.

Let Pj;k be the random variable given by Pj;k = 1
2
(1 + �j;k),

and assume that�j;k has anM -component beta-mixture density
with parametersfpi; sigMi=1. Using (6) we obtain

�j�1;2k = �j;kPj;k (11)

Since �j;k, and therefore Pj;k, are independent of�,
E
�
�n
j�1;2k

�
= E

�
�n
j;k

�
E
�
Pnj;k

�
and

E
�
Pnj;k

�
=

E
�
�n
j�1;2k

�
E
h
�n
j;k

i (12)

The momentsE
�
�n
j�1;2k

�
andE

�
�n
j;k

�
are easily estimated

from the data. For example,E [�j;k] �
1

N=2j�1

P
k cj;k and

E
�
�2
j;k

�
� 1

N=2j�1

P
k

�
c2j;k � cj;k

�
. Substituting these esti-

mates for variousn into (12) produces a set of equations that can
be solved for the parametersfpi; sigMi=1.



5. COMPARISON OF WAVELET-BASED INTENSITY
ESTIMATORS

Here we compare the performance of the new Bayesian estima-
tion algorithm with several existing methods. To assess the per-
formance of each method four test intensity functions were used.
These functions were the “Doppler,” “Blocks,” “HeaviSine,” and
“Bumps” test signals proposed in [6]. Since the intensity func-
tions must be non-negative, the test functions were shifted and
scaled to obtain an intensities with a desired peak value and a min-
imum value of 1

peak value. We compare the performance of the

PRESS-optimal estimator (PRESS) [2], the new Bayesian estima-
tor (BAYES) described in this paper with a two component beta-
mixture model for the innovations with parameters1 s1 = 2 and
s2 = 10000., the square-root estimation methods using the Haar
wavelet transform (D2), and the square-root estimation method us-
ing the Daubechies-8 (D8) wavelet2. The square-root method first
computes the square-root of the counts, then treats the square-root
data as though it were Gaussian and applies a soft-threshold non-
linearity to “denoise” the data. After denoising the square-root
data the result is squared to obtain an intensity estimate. For both
square-root methods the universal threshold proposed in [6] was
used, whereN is the length of the data vector. Table 1 gives the
mean-square errors (MSEs) of the various methods for a peak in-
tensity of8. Table 2 gives the MSEs of each method for a peak
intensity of128. All MSEs are normalized by the norm of the un-
derlying intensity function. Table 1 shows that at low intensities
(low signal-to-noise) the Bayesian estimator dramatically outper-
forms all other methods. Table 2 shows that at higher intensities
the performance of the other methods is closer to the Bayes’ esti-
mator’s performance, but that the Bayes’ estimator is still the best
overall choice.

Table 1: MSE results for various test intensities and estimation
algorithms. Peak intensity in each case is8.

Intensity PRESS BAYES D2 D8
Doppler 0.062 0.030 0.056 0.049
Blocks 0.072 0.027 0.071 0.086

HeaviSine 0.064 0.017 0.036 0.032
Bumps 0.219 0.164 0.470 0.477

Table 2: MSE results for various test intensities and estimation
algorithms. Peak intensity in each case is128.

Intensity PRESS BAYES D2 D8
Doppler 0.006 0.007 0.014 0.008
Blocks 0.005 0.002 0.010 0.014

HeaviSine 0.005 0.003 0.006 0.003
Bumps 0.020 0.025 0.113 0.097

1The mixing parameterp1 = 1 � p2 is determined using the data-
adaptive moment matching method given in Section 4.2

2The method proposed in [1] is not compared since it is derived under a
“burst-like” process model which is not appropriate for these test functions
with the exception of the Bumps function

6. CONCLUDING REMARKS

We have introduced a Bayesian approach for Poisson intensity
estimation. We argued that wavelet-domain analysis is the right
framework for carrying the Bayesian estimation. We introduced a
novel MMI prior model for intensity functions based on amulti-
plicativeinnovations structure. The MMI captures many of the key
features of real-world intensity functions and provides an excellent
match to the Poisson distribution. The MMI model facilitates a
wavelet-domain Bayesian estimation procedure that proceeds in a
natural fashion from coarse-to-fine resolutions. The estimator has
a simple closed expression and can be implemented inO(N) op-
erations, whereN is the dimension of the finest resolution of the
discretized intensity.

We also note that the Haar transform is not shift-invariant, and
therefore the prior model and estimator developed in this paper are
implicitly shift-dependent. This type of shift-dependence can lead
to blocking artifacts in the reconstruction. To remedy this poten-
tial shortcoming, we may regard the prior and estimator developed
above as being conditioned on a particular shift. Then, in the spirit
of Bayesian estimation, we can place a prior distribution on all
possible shifts (e.g.,uniform), and compute the shift-unconditional
estimator by averaging over the shift prior. This procedure can be
regarded as a Bayesian interpretation of the translation-invariant
wavelet de-noising scheme for Gaussian signals introduced in [7].

Finally we have compared the performance of the wavelet-
domain Bayesian estimator with other existing methods using a
suite of test intensity functions. This comparison shows the new
method significantly outperforms other wavelet-based methods
and that the two component beta-mixture model for the innova-
tions provides a good prior for the many signals of diverse charac-
teristics. In future work, we plan to investigate extensions of this
framework to related point processes.
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