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ABSTRACT

In this paper we discuss the problem of reconstruction of
a high resolution image from a lower resolution image by a
jointly optimum interpolative vector quantization method.
The interpolative vector quantizer maps quantized low di-
mensional 2x2 image blocks to higher dimensional 4x4 blocks
by a table lookup method. As a special case of generalized
vector quantization (GVQ), a jointly optimal quantizer and
interpolator (GIVQ) is introduced to find the corresponding
code books for the low and high resolution image. In order
to incorporate the nearest neighborhood constraint on the
quantizer and also to obtain the desired distortion in the in-
terpolated image, a deterministic annealing based optimiza-
tion technique has been applied. With a small interpolation
example, we will demonstrate the superior performance of
this method over nonlinear interpolative vector quantiza-
tion (NLIVQ), in which the interpolator is optimized for a
given input quantizer.

1. INTRODUCTION

Increasing image resolution is of great interest for many
imaging applications. The application that motivated this
work is the problem of scanning a text image at low res-
olution (e.g., 300 dpi) and reproducing it by printing at
a higher resolution (e.g., 600 dpi). There are many other
possible applications including image enlargement, and en-
hancement of coded images.

Standard approaches of interpolation, such as the bi-
linear method and spline techniques, while giving better
quality in the smooth portions of images, tend to smooth
edges and other discontinuities. The notion of generalized
interpolative VQ (GIVQ), has evolved from our earlier im-
plementation of nonlinear interpolative VQ (NLIVQ), intro-
duced by Gersho [2]. The quality of the interpolated image
by NLIVQ is not promising. Only small improvement in
image quality can be achieved by substantially increasing
the codebook size, but this increases the encoder complex-
ity and also the susceptibility of the interpolator to data
outside the training set. As an alternative to the highly
suboptimal NLIVQ method, we propose GIV(Q as a nonlin-
ear interpolation technique based on a generalized vector
quantization (GVQ). The basic idea of GVQ was proposed
in [1] where the mapping of an observable random vector
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X to a finite set of estimated values of a random vector Y
is treated as a single operation. Successful application of
GVQ to the coding of noisy sources [4] encourages us to
apply it to the interpolation problem. In generalized inter-
polative VQ (GIVQ), a low dimensional feature vector X is
mapped into a increased dimension signal vector Y produc-
ing a high resolution image. While a quantized interpolator
is mandated by this method to limit the complexity of in-
terpolation, it may also be usefully employed to transmit
fewer data samples through a channel. Then the receiver
interpolates the signal vector from the quantized features.

GIVQ is a joint optimization method designed by a de-
terministic annealing approach [5], [6]. During the design
phase of GIVQ), the training vectors are assigned to clus-
ters in a probabilistic way with the probability distributions
chosen to be Gibbs distributions. Consequently, the joint
optimization of the quantizer and interpolator is formulated
within a probabilistic structure in which Shannon’s entropy
is maximized subject to a constraint on the expected overall
distortion in the signal vectors Y. In this paper, we will de-
velop the GIVQ algorithm and demonstrate the comparison
between NLIVQ and GIVQ.

2. INTERPOLATIVE VQ

2.1. Nonlinear Interpolative VQ, (NLIVQ)

Suppose that training pairs (X, Y;) correspond, respec-
tively, to the low and high resolution image vector pairs.
NLIVQ has a sequential design procedure. A conventional
nearest-neighbor VQ (optimum quantizer) is first designed
using a training set of low dimensional input (feature) vec-
tors X; without regard to the statistical correlation between
X: and Y;. For this step, to avoid local minimum solutions
we used a deterministic annealing based codebook design
algorithm [5],[6] instead of the more usual LBG method [3].
Then, the interpolative decoder is designed to be optimal
for the given encoder (quantizer). For the squared-error dis-
tortion measure, it suffices to let the i’th interpolative code
word be the average of all training vectors Y; whose corre-
sponding low dimensional vectors have been encoded with
index i. Consequently, NLIVQ is a suboptimal procedure
because the interpolation and quantization are not designed
jointly. Besides, the NLIVQ design objective of minimizing
the quantization error in X is not matched to the objec-
tive of the interpolation problem which is concerned with
minimizing the distortion in the output signal vector Y.



2.2. Generalized Interpolative VQ, (GIVQ)

GIVQ is based on GVQ [1]. In GVQ the estimate of a ran-
dom vector Y is formed from a random vector X using an
estimator h(-) that is constrained to take on a finite set of
N values. The mapping h(z) is viewed as a generalized vec-
tor quantizer (GVQ) that optimally generates a quantized
approximation to Y from an observation of X.

GVQ defines a partition of the k dimensional input
space R* into N regions where N is the codebook size.
The partition regions R; are defined as:

R;={z € R h(z) =y} i=1,2,...,N (1)

The GVQ design objective is to minimize the distortion of
estimating Y by h(z) defined as d;(Y,h(z)). As depicted
in Fig. 1, the GIVQ consists of an encoder ¢ followed by
an interpolative decoder (ID). The encoder maps the low
dimensional input vector X to an index ¢ € {1,2,...,N}
by applying a nearest neighbor rule over a low dimensional
codebook C with size N. Then the interpolative decoder
looks up an increased dimension signal vector Y in code-
book C*.

The main difference between GIV(Q and NLIVQ is that
NLIVQ tries to minimize the distortion in the input space
(optimum quantizer), while GIVQ’s objective is to mini-
mize the distortion in the output space. Consequently, un-
like NLIVQ, the code words of GIVQ in codebook C are
not necessarily the ‘centroids’ of the input space vectors as-
signed to the same partition. Similar to GVQ, for a mean
squared error distortion measure, the optimum GIV(Q sat-
isfies the necessary conditions given in [1].

To formulate the GIVQ problem, let the sets {z;},
and {y;}_; be the code words in the low and high dimen-
sional vector space, respectively. Also consider ds(-,-) and
di(-,-) to be the distortion measure in the feature vector
space X and increased dimension vector space Y, respec-
tively. Then, for a given set of training pairs T = {(z¢, y¢)},
we want to optimize the code words {z;};—; and {y:};"; so
that the total distortion in the signal space Y is minimized:

min {D}= min
{z:}{y:} {zi} {y:}

Z di(yt, h(x+)) (2)

(z¢,y¢)

Here h(-) is GIVQ mapping function consistent with the
VQ nearest neighbor encoding rule:

{if i= argmjin{df(fvt,h(wj))}
then let y; = h(xy)

From (2) and (3), it is obvious that this joint optimiza-
tion problem is not a trivial one. Deterministic annealing
DA has been shown by [4] to be a successful method to solve
the optimization problem while imposing the nearest neigh-
bor constraint given by (3). Therefore, we have chosen the
(DA) approach for the joint optimization of the quantizer
and interpolator.

(3)

3. GIVQ BY DETERMINISTIC ANNEALING

Deterministic annealing (DA) [5] is a probabilistic frame-
work to solve optimization problems. Although convergence
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Figure 1: Block diagram of a Generalized Interpolative VQ.

to the global minimum is not assured, it has been shown
to be a successful method for avoiding local minima. Be-
sides, DA provides a probabilistic encoding rule for GIVQ
that can be exploited to enforce the nearest neighbor con-
straint on the encoder while minimizing the distortion in
the signal space Y. Randomization of the partition subject
to a constraint on the encoder entropy results in a Gibbs
distribution. This data clustering becomes a fuzzy member-
ship operation in which each vector X is assigned to every
cluster by associative probabilities given by the Gibbs’ dis-
tribution:

]\?XP(_'Ydf(a::xj)) (4)
> h— exp(—yds(z, z1))

where +y is a positive scalar parameter controlling the degree
of randomness. By this fuzzy membership, each input vec-
tor X belongs to all of the clusters with a probability that
depends on its distance from the code words representing
those clusters. In this formulation it is assumed that the
data assignment is an independent operation ignoring the
correlation between adjacent image blocks. However in the
continuation of this work , we will incorporate this corre-
lation into the structure of GIVQ. The associated Shannon
entropy for this random partitioning is defined by:

H=-Y p(x e R;)loglp(z € R))] (5)

T

p(z € Rj) =

Now the optimization of GIVQ can be formulated as a mini-
mization of an objective distortion D defined by (2) subject
to encoder entropy constraint (5):

F = min

= D—-06-H 6
{zi}{yity { } ©)

min

{zi}{yity
in which 0 is a temperature in the annealing process. By
this definition, we have an effective objective distortion.
The free energy F' is minimized to obtain the minimal dis-
tortion D in the signal vector Y, while imposing the nearest
neighbor encoding rule by gradually reducing the random-
ness H through a gradually decreasing temperature . Us-
ing (2),(5), and (6) gives:

F= %" (@ € R){di(ye,y;) + 0loglp(w: € R;)]}
(z¢,y¢) j=1
(7)



To obtain the necessary optimality conditions for minimiz-
ing F', we set to zero the derivatives of F' with respect to
{x:}1, {y:}.1, and 5. By solving the resulting equations
for the case of the squared-error measure in ds(-,-) and
di(-,-), each representative in the signal vector Y is defined
as the center of mass of the fuzzy cluster:

Z p(zs € Rj)y:

- (meye)

Yi =
Zp(xt € R;)
T

and the corresponding representative in the feature vector
space can be derived as:

j=1,2,...,N (8)

Z (sz — Fp)p(z¢ € Rj)xe

_ (zeyr)

YT TS (R, - Foplece By)

Tt

ji=1,2,...,N (9)

Here F);, and F; are defined for any (¢, ye) as:

F, = Zp(a:t € Rj)F., (10)
Fu; = di(ye,y;) + 0loglp(z: € R;)] (11)

The scalar parameter « should satisfy the following opti-
mality equation:

N
Z—I; = Y Y Fplei € Ry)-

(zt,yt) j=1

{Zp(fct € Ry)dy(xt, vr) — df(l‘t:l‘k)} =0 (12)

k=1

Since an analytic form for v cannot be derived from
(12), we use a gradient descent method to optimize F' with
respect to {;}i,, {yi}ie, and v at any given tempera-
ture . The algorithm starts at a very high temperature
and small value of 7 with only one initial representative in
both the feature and signal spaces. As the temperature de-
creases the balance between distortion and entropy changes
in (7) toward less randomness. For each gradually decreas-
ing temperature, the representatives and scalar parameter
are optimized. This procedure continues until # reaches a
critical value given by:

6 = 2X (13)

O’wry Cmyo;yl)
Here X is an eigenvalue of its matrix argument, C,, and
Cyy are cross-covariance and covariance matrices defined
for each cluster by taking in account the probabilistic data
assignment. At the critical temperature, the critical clus-
ter’s code word in the higher dimension space Y is split in
the direction of the eigenvector corresponding to A. Also the
split in the corresponding feature code word X is initiated
along the direction of the projection of that eigenvector into

the feature space. This procedure of decreasing the temper-
ature and optimizing (7) continues as described, and every
time the temperature hits the critical temperature of any
cluster, the corresponding code word is split. By proceed-
ing in this fashion, the number of code words increases to
the desired value. At that point the splitting is stopped and
the temperature is driven to zero while the parameters in
(7) are optimized. At the limit of # — 0 (and a large value
of ) the randomness is highly limited while the distortion
in signal space is minimized through (7). It is important
to note that due to the memory and computation cost, the
training of GIVQ over text image data does not using the
splitting procedure described above. Instead we randomly
initialized both feature space code words {z;}}; and sig-
nal space code words {y;}ie,, then we optimized (7) with
respect to them for each given temperature.

4. SIMULATION RESULTS

In order to demonstrate the advantage of GIVQ over NLIVQ
for the interpolation problem, we have performed some ex-
periments. As an example, we consider five-cluster data
with uniform distributions. The signal space vectors Y are
four dimensional random vectors with ‘centroids’ of clusters
at:

1 1 6 7 4

.05 .05 .05 .05 .95

1 7 7 1 A4

95 95 95 .95 .05

Here each column of the matrix is the exact coordinate of
the ‘centroid’ of one of the clusters. Fig. 2a shows the
distributions of the two dimensional feature space X ob-
tained by down-sampling (odd samples) the signal vectors
Y. We used these 4500 pairs of (X,Y") to train GIVQ and
NLIVQ with codebook size of five. The resulting clustering
by NLIVQ for the two-dimensional feature space is shown
in Fig. 2b, and the corresponding code words are plotted as
bold discs. Since this method partitions the feature space
to minimize the distortion in this space, those vectors whose
location are in the corners of the center cluster (this cluster
is shown by the - symbol) are assigned to the neighboring
clusters. Thus the signal space code words (shown by the
columns of the following matrix) obtained by the Euclidean
means of the vectors of the resulting partitions are differ-
ent from the true ‘centroids’ given by the columns of the
previous matrix.

A1 .12 58 .68 .39
16 .2 .21 17 .95
A2 .67 .67 .12 .39
84 8 78 83 .05

In Fig. 2c, the resulted partitioning of the feature space by
GIVQ has been plotted. In this method the feature space
is partitioned such that the signal space distortion is mini-
mized. Thus the feature space code words (shown by bold
discs in Fig. 2.c) are different from the ‘centroids’ of the fea-
ture space. This produces very accurate (the same as the
true center points) signal space code words. We also ob-
tained the resulting total rms distortion of the signal space
Y over training set. Comparing the distortion of NLIVQ



(1292.7) with that of GIVQ (584.9) shows remarkably bet-

ter performance of GIVQ.
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(c) Resulting clustering by GIVQ (2 — D projection).

Figure 2: (a) A five-cluster uniformly distributed feature
space and the partitions produced by: (b) NLIVQ. (c)

GIVQ.

5. CONCLUSION

We presented an interpolation method that makes use of a
vector quantizer that is jointly optimized for encoder and
interpolative decoder. The example illustrates the superior
performance of GIVQ over NLIVQ. Although the training
procedure is complicated, the interpolation is only a table
look up task. For our application we want to interpolate
a 300 dpi image to 600 dpi. For training we can scan the
training images at 600 dpi and downsample them by two in
each dimension to obtain the corresponding low resolution
images. With this approach, 2x2 blocks of the low reso-
lution training images correspond exactly to 4x4 blocks of
the high resolution training images. Our results for NLIVQ
have shown little improvement in image quality by increas-
ing the codebook size from 128 to 256. Now, we are in the
process of training GIVQ over text image data using code-
book sizes of 128 and 256. In the future, we will consider
the problem of the joint optimization of interpolation and
halftoning under a common distortion measure. This will
enable us to render a gray level interpolated text image to
an image suitable for binary devices.
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